
 Advanced search

Linux Journal Issue #12/April 1995

Features

Linux: It's Not Just for Intel Anymore by Joseph L. Brothers
A Linux Port Tour: Taking Linux Beyond its Intel-Processor-Based
Beginnings

Leviathon by Paul M. Sittler
Accessing On-Line Information through Linux.

Ethernetting Linux by Terry Dawson
Connecting Linux to an Ethernet Network

Building Shared Libraries by Eric Kasten
Understanding and Building a Linux Shared Library System.

News & Articles

What's GNU? Plan 9 Part II by Arnold Robbins
Cooking with Linux by Matt Welsh
Kernel Korner : The ELF Object File Format: Introduction by Eric
Youngdale
Mr. Torvalds Goes to Washington by Kurt Reisler

Reviews

Product Review InfoMagic by Caleb Epstein
Product Review Xfig by Robert A. Dalrymple
Book Review A Quarter Century of Unix by Peter H. Salus
Book Review The Mosaic Handbook for the X Window System by
Morgan Hall

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/012/0063.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1048.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1051.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1052.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/0062.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1054.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1059.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1062.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/0060.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1043.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/2688.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/2689.html

Columns

Letters to the Editor
Novice to Novice Linux Installation and X-Windows by Dean
Oisboid
New Products
System Administration Setting Up Services by Mark F.
Komarinski

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/012/2683.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1057.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/2686.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/1058.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux: It's Not Just for Intel Anymore

Joseph L. Brothers

Issue #12, April 1995

A Linux port tour.

Linux isn't just for breakfast, er, Intel, anymore. Everybody loves it and wants it
on their favorite processor: 680x0, Alpha, MIPS, Sparc, PowerPC. That's good,
because it makes Linus happy, Linux better, life easier for Linux users, keeps
commercial OS vendors on their toes, and sells a lot of hardware. It's good, too,
because Linux ports to newer processor technologies help ensure the
continuing viability of our favorite operating system. On the other hand, the
ports could split development and lead to bugs and confusion from too many
code streams. The changes necessary for portability could mean slower Linuxes
for everyone. To head off these problems, Linus and the other porters are
working together to take Linux beyond itsIntel-processor-based beginnings.

For those who are new to the Linux community, we should start by explaining
that there is a long-standing joke about “virtual beer” in the Linux community.
The “Oxford Beer Trolls” were credited for having sent “virtual beer” (money
with which to buy beer, presumably) to Linus, and soon “virtual beer” meant
any sort of thanks or praise. Because the phrase has become common, puns on
(virtual) beer are commonplace among Linux users. Let's take a flying tour of
the virtual breweries, their plumbing, hydraulic engineers and brew masters,
and end with a quick tasting of the product. Let's start with the recipe. Table I
lists the ingredients for each port and some notes on the process. You can see
how far along each batch is.

• cross-tools consist of at least a compiler and binary utilities (as, ar, ld) that
produce executables for the new machine + operating system
combination.

• merged source refers to integration of the port with Linus' kernel source.
• simulator is a program that pretends to be the new hardware so new

executables can be run and debugged.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/012/0063t1.html

• boot is the few hundred words of native assemble code that checks, and
may set up the hardware before beginning to load the kernel. The port is
done once that code stops changing.

• kernel refers to the minimum operating software needed to start a user
shell. It includes memory management, process scheduling, rudimentary
device drivers and at least one file system.

• runs shell includes the capability of running the basic Linux command line
utilities.

• native tools are the result of using the cross-tools to cross themselves to
the new machine + OS.

• SDK means the newly ported Linux can compile a working copy of itself
from scratch, completely stand-alone.

• user apps consist of text processing, e-mail, alternate shells and file
systems, more device drivers, really a complete character-oriented Linux.
In short, everything except X-Windows.

• X-Windows adds a standard graphical user interface.

As you examine the birthplace of each port, you may enjoy keeping track of its
relative ability to intoxicate. For virtual brews, this is calibrated in BogoMips
(Bogus Misleading Indication of Processor Speed). Remember, this cannot be
used to compare different processors.

Note that the “Mips” along the left side of Table II refers to a RISC processor
family, not a measurement of speed. Now we'll check in at each brewery to look
around, meet the makers, and take the temperature of the batches. We won't
spend any time with the ix86 Linux you are all familiar with. Besides, it's not a
port; it's the original. On with the tour.

Name: Linux/68k

Linux/68k is a port of Linux to Amiga and Atari 680x0 platforms having
hardware memory management and floating point support.

• Status:beta
• FAQ Access:pfah.informatik.unikl.de:8000/pers/jmayer/linux68k-faq ftp://

tsx-11.mit.edu/pub/linux/680x0/FAQ (or any tsx-11 mirror)
• FAQ Maintainer:Joerg Mayer, jmayer@informatik.uni-kl.de
• Mailing Lists:Linux-activists channel 680X0 at linux-activists-

request@niksula.hut.fi linux-680x0@vger.rutgers.edu to subscribe, send
mail to: majordomo@vger.rutgers.edu

• Source Access: www-users.informatik.rwth-aachen.de/~hn/linux68k.html
http://src.doc.ic.ac.uk/packages/Linux/tsx-11-mirror/680x0/ ftp://
tsx-11.mit.edu/pub/linux/680x0ftp://ftp.germany.eu.net/pub/os/Linux/

https://secure2.linuxjournal.com/ljarchive/LJ/012/0063t2.html
http://pfah.informatik.unikl.de:8000/pers/jmayer/linux68k-faq
mailto:jmayer@informatik.uni-kl.de
mailto:linux-activists-request@niksula.hut.fi
mailto:linux-activists-request@niksula.hut.fi
mailto:linux-680x0@vger.rutgers.edu
mailto:majordomo@vger.rutgers.edu
http://www-users.informatik.rwth-aachen.de/~hn/linux68k.html
http://src.doc.ic.ac.uk/packages/Linux/tsx-11-mirror/680x0

Mirror.SunSITE/ftp://src.doc.ic.ac.uk/computing/operating-systems/Linux/
tsx-11-mirror/680x0/

• Release Coordinator:Amiga-Hamish Macdonald,
hamish@border.ocunix.on.ca Atari - Roman Hodek,
rnhodek@cip.informatik.uni-erlangen.de

• Supported Platforms:Amiga-A3000, A3000T, and A4000/40 (but not the
A4000/30)Atari-Falcon (plus FPU), TTMac—no information available

• Help Wanted:
◦ More hardware-dependent device drivers are needed. The Kernel

Hackers Guide needs to be updated for the 680x0 with special
emphasis on memory management.

◦ Linux/68k runs a beta-quality 680x0 Linux kernel on two makers'
platforms, a number of file systems, shells, and some utilities. There
is no X-windowing yet, though work on it is progressing. Full native
development is possible using the specially contributed tools.

◦ The Amiga and the Atari ports were merged so successfully that the
same kernel image (the vmlinux from tsx-11) runs on both machines.
Another advantage of this is that all user program binaries should
work on any machine running Linux/68k if only hardware-
independent devices are used. These devices include ramdisk, mem,
pty, tty, vt, slip, net/inet, and general SCSI stuff. These file systems
have been ported: minix, ext2, msdos, proc, isofs, nfs.

Hamish Macdonald, describing the state of things on January 4:

I've currently got a private source tree at the v1.1.61
level, I'm tracking Linus' portability changes, and have
been submitting comments to him on portability-
related abstractions. As time permits, I'll probably be
submitting more changes to this end.

Name: Linux/Alpha

Linux/Alpha is a port of Linux V1.0 to the Digital Equipment Corp. Alpha RISC
microprocessor.

• Status:Kernel SDK
• Supported Platforms:Linux/Alpha is primarily aimed at PC-class Alpha

platforms that support ISA, VLB, and PCI devices.
• FAQ Access:watch comp.os.linux.announce
• FAQ Maintainer:Jim Paradis (paradis@amt.tay1.dec.com)
• Mailing Lists:

◦ linux-alpha@vger.rutgers.edu To subscribe, send mail to:
majordomo@vger.rutgers.edu

mailto:hamish@border.ocunix.on.ca
mailto:rnhodek@cip.informatik.uni-erlangen.de
mailto:paradis@amt.tay1.dec.com
mailto:majordomo@vger.rutgers.edu

◦ linux-axp@amt.tay1.dec.com To subscribe, send mail to: linux-axp-
request@amt.tay1.dec.com

• Source Access:gatekeeper.dec.com:/pub/DEC/Linux-Alpha
• Release Coordinator:Jim Paradis (paradis@amt.tay1.dec.com)
• Help Wanted:

◦ If you have an Alpha-based PC-class system running OSF/1 (e.g. DEC
2000) you can use the same system for development and test bed.
Otherwise, you will need two systems.

◦ The development system can be any system that can support the
Linux/Alpha cross-development tools. The cross tools have been
successfully built and tested on the following systems:

▪ Linux 1.1.x 386/486 (natch!)
▪ DEC OSF/1 Alpha 2.0
▪ DEC RISC/ULTRIX 4.2 (MIPS)
▪ SunOS 4.1 (Sparc)
▪ Jim Paradis, announcing the Linux/Alpha

• Developers' Kit 20 January `95:
◦ The Linux/Alpha Software Developers' Kit is the first public release of

Linux operating system components for Digital's Alpha family of
microprocessors.

◦ The SDK is available via anonymous FTP [see above]. I STRONGLY
suggest that you first download the files README and
SDK_CONTENTS and read them before downloading anything else
(hint: you do NOT need to download all 55Mb in that directory!)

◦ The Linux/Alpha SDK is NOT a fully-functional Linux distribution. The
documentation is EXTREMELY sketchy and is mainly in the form of
back-of-the-envelope notes. Linux/Alpha is not self-hosting; one
must cross-compile the kernel and utilities on another system using
the available cross-development tools. The kernel is extremely
fragile, and several important code paths have not been tested yet.
Very few utilities are available; you can bring the system up to a shell
prompt, but you can't do much of anything else yet. Device driver
support is minimal; currently, we support console-callback device
drivers, but these are EXTREMELY slow (console-callback drivers are
the Alpha equivalent of BIOS drivers on Intel systems). We have
ported three sample drivers so far for the DEC 2000 AXP system:
keyboard, text-mode VGA, and Adaptec 1742 SCSI.

◦ In other words, Linux/Alpha is currently in a state that only a kernel
hacker could love. If that describes you, then by all means download
the SDK and give it a try!

mailto:linux-axp-request@amt.tay1.dec.com
mailto:linux-axp-request@amt.tay1.dec.com
mailto:paradis@amt.tay1.dec.com

Name: Linux/MIPS

Linux/MIPS is a Linux port for computers equipped with Mips R4x00
processors.

• Status:tools alpha; kernel pre-alpha
• Supported Platforms:Deskstations Tyne and Acer PICA with R4400PC

andR4600 processors. The Deskstations support the ISA bus.
• FAQ Access:www.waldorf-gmbh.de:/linux-mips-faq.html ftp.waldorf-

gmbh.de:/pub/linux/mips/linux-mips-FAQ
• FAQ Maintainer: linux@waldorf-gmbh.de
• Mailing Lists:

◦ linux-mips@vger.rutgers.edu to subscribe, send mail to
majordomo@vger.rutgers.edu

◦ linux-activists channel “mips”. To subscribe, e-mail linux-activists-
request@niksula.hut.fi with “X-Mn-Admin: join mips” as the first and
only line.

• Source Access:sunsite.unc.edu:/pub/Linux/ALPHA/mipsftp.uni-mainz.de:/
pub/Linux/MIPSftp.waldorf-gmbh.de:/pub/linux/mips

• Release Coordinator:Andreas Busse (andy@waldorf-gmbh.de)
• Help Wanted:Sure, you can help! If you have a Mips box, please let us

know.
◦ From the FAQ:

▪ We have a half-way working kernel for the Deskstation boards.
Console, floppy, serial and parallel I/O seem to be OK. The C
library is nearly complete. We expect the first user process
running soon. The kernel will be released when a user can
issue shell commands, probably early in 1995.

▪ Support/development tools available include cross compilers,
assemblers and linkers ready to use for Linux/ix86, SunOs 4.1.3
and Solaris2.3. A Mips R2000/R3000 simulator (SPIM) for Linux/
ix86 is also ready to download.

◦ Andy Busse comments:
▪ My part of the project is kind of project management. And, of

course, it was my idea to port Linux to Mipses. From my point
of view, different native endianesses is probably the most
complicated part of Linux/MIPS. Most systems come up little-
endian while some run big-endian only. However, I still hope
that it will be possible to have user code compatibility on all
supported Mips boxes.

▪ Ralf Baechle (ralf@waldorf-gmbh.de) is currently working on
the Deskstation port:As you might have seen, the 68k port is

http://www.waldorf-gmbh.de:/linux-mips-faq.html
mailto:linux@waldorf-gmbh.de
mailto:majordomo@vger.rutgers.edu
mailto:linux-activists-request@niksula.hut.fi
mailto:linux-activists-request@niksula.hut.fi
mailto:andy@waldorf-gmbh.de
mailto:ralf@waldorf-gmbh.de

about to be merged into Linus' kernel distribution. Since the
68k port is the most advanced of the ports, I have high hopes
for the integration of Linux/68k. It will make porting for all
others a lot easier.

Name: Linux/Sparc

Linux/Sparc is a port of Linux to the sun4c, based on Version 7 of the Sparc
architecture.

• Status:just starting
• Supported Platforms:Sun 4/20 is typical. A more complete list will be

available soon.
• FAQ Access:see mailing list
• FAQ Maintainer: David S. Miller, davem@nadzieja.rutgers.edu
• Mailing Lists:linux-sparc@vger.rutgers.edu To subscribe, send mail to:

majordomo@vger.rutgers.edu
• Source Access:ftp://tsx-11.mit.edu/pub/linux/sources/system
• Release Coordinator:David S. Miller, davem@nadzieja.rutgers.edu
• Help Wanted:Contact David S. Miller if you have a Sparc to boot on. In

David Miller's words,
◦ Right now, I have my test box do the following: 1) Print boot-up

messages, 2) Determine the machine type (sun4c, sun4m, sun4d,
etc.), 3) Determine the available physical memory on the machine
and other types of information, 4) Probe the OpenBoot PROM for
devices that are on the machine. The PROM is a real win here.5)
BogoMIPS, the most important part of the port! This SUN 4/20 gives
17.94 BogoMIPS. 6) Completely map the kernel's virtual pages. 7)
Enable and flush the Virtual Address Cache.

◦ I have a lot of the architecture-dependent include/asm-sparc files
written and am able to `make config; make dep; make clean' on the
tree. A lot of the file system code can be compiled. Getting it to work
is another story.

◦ The current work on the Sparc port of Linux is aimed at the sun4c
machines which are based on Version 7 of the Sparc architecture.
The main difference (between machine types) is that the MMU's are
accessed in a different fashion in V8 and onward. Fortunately,
Version 8 memory management (for sun4m) is defined by the V8
manual “The Sparc Reference MMU”. I am attempting to make
sun4m support easy to just plug in later. Yes, this means multi-
processor support and all that entails. Although no such machines
will exist before mid `95, I am doing some of my code with the
Version 9 Sparc in mind: better prepared than not.

mailto:davem@nadzieja.rutgers.edu
mailto:majordomo@vger.rutgers.edu
mailto:davem@nadzieja.rutgers.edu

◦ I have been trying to coordinate my code with Linus such that we
don't buck heads in the kernel tree, so to speak. Eric Youngdale and
Linus have been extremely helpful in deciding how best to integrate
my memory-management code into the current tree.

Name: Linux/PowerPC

Linux/PowerPC is a port of Linux to PowerPC processors, initially the 601 and
603.

• Status:resuming
• Supported Platforms:Apple PowerMac, Motorola PowerStack, IBM Power

Personal PC. The PowerStack uses both ISA and PCI buses.
• FAQ Access:see mailing list
• FAQ Maintainer: brothers@halcyon.com
• Mailing Lists:linux-ppc@vger.rutgers.edu To subscribe, send mail to:

majordomo@vger.rutgers.edu watch the mailing list for announcements
• Source Access:ftp://tsx-11.mit.edu/pub/linux/sources/system/
• Release Coordinator: brothers@halcyon.com
• Help Wanted:

◦ A documentation specialist is needed. Knowledge of the Linux
Documentation Project, SGML, HTML, TeX, LaTeX, and desire to learn
literate programming with “noweb” are required.

◦ Volunteers having PC-class RS6000 machines or IBM PowerPersonal
PCs are needed for boot and kernel testing and to write or port
device drivers.

◦ The Apple PowerMac porters mostly have a cross-development
environment (not freeware). Access to the Mac's ADB internal bus
specifications appears imminent, as Apple now seems willing to
release the information under certain conditions.

◦ With the addition to the project of some Motorola PowerStacks (on
order) and their soon-to-be owners at year end, `94, the PowerStack
part of the Linux/PowerPC port is beginning to come together. A
GNU cross-development tool set, targeted at the PPC, has been
started.

◦ Many thanks go to Northwest Nexus (info@halcyon.com) for
supporting the Linux/PowerPC Project by providing the author's net
access. Thanks also to MicroApl Ltd. (London, UK
(MicroAPL@microapl.demon.co.uk)), makers of PortAsm assembler
source translators, for their contribution.

mailto:brothers@halcyon.com
mailto:majordomo@vger.rutgers.edu
mailto:brothers@halcyon.com
mailto:info@halcyon.com
mailto:MicroAPL@microapl.demon.co.uk

Wrapping Up The Virtual Brewery Tour

Jim Paradis sums it up well:

Implementing ANY operating system on a new
platform, is a major undertaking. It has taken dozens,
if not hundreds, of programmer-years to bring the
Intel version of Linux to the point where it is today.
Too, while a kernel port is a significant piece of
engineering, it is only a small part of porting an
operating system. It is not surprising that the non-Intel
versions of Linux are taking some time to appear.

You can all help yourselves to the samples we have provided. What? The
glasses are empty? Of course they are, that's one of the risks in breweries like
these. Good brews take time. We do hope you've enjoyed your tour of the new
virtual breweries, though. And remember, when sampling RISC ports, don't
hold your breath!

Joseph L. Brothers, CCP, CDP, is a Senior Software Engineer in Motorola's
Wireless Data Group where he writes distributed engineering productivity
software using the noweb literate programming tool. On his own time, he
volunteers as the Linux/PowerPC Project's PowerStack task coordinator.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in the Real World

Paul M. Sittler

Issue #12, April 1995

Leviathan: A Linux-Based Internet Information Server

Texas Agricultural Extension Service (TAEX) “helps people improve their lives
through an educational process which uses scientific knowledge focused on
issues and needs”. Much of TAEX's mission involves information transfer to the
people of the State of Texas. Like many government agencies tasked with
providing better service with a shrinking resource base, TAEX has long been
interested in innovative approaches to better serving the public without the
barriers of time and distance.

TAEX began experimenting with electronic information distribution in 1984 with
dial-in bulletin boards. In 1992, we rescued an aging Compaq DeskPro 286 from
the auction block. We transformed it into an experimental Gopher/PopMail/FTP
(File Transfer Protocol) server. The surprising response to this soon filled the
40MB drive. We began an exhaustive search for a better platform.

The best server software ran on Unix platforms, but they were prohibitively
expensive. We were already using some Unix platforms for mail and
networking applications. We tried to use one as a gopher server, but the
response time was inadequate. We realized that additional duty as an
information server would require significant system upgrades. We would need
to increase main memory, add more mass storage, upgrade the operating
system, and obtain the separately marketed “software development system”
(basically a C compiler, awk, and yacc). Unfortunately, any one of these items
cost more than an entire high-end Intel-based PC! When we tried to get price
quotes, we discovered that the TCP/IP networking package for the upgraded
SVR4 operating system was “not yet available”. Coincidentally, our agency also
received another decrease in funding levels.

About that same time, a Finnish college student added networking to his free
“Linux” operating system. This free Unix clone ran on readily available Intel

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

80386/486 processors with inexpensive drives. Initial experimentation on an
80386-based box showed that it actually worked quite well! TCP/IP networking
was thoughtfully included, as was a superb C compiler system. Linux was like
no other Unix system we had ever used, as it combined some BSD features
with some SVR4 features, while maintaining some POSIX compliance. Our initial
confusion changed to the delightful perception that Linux provided a most
sensible mix of desirable features.

We obtained a low-end 80486 machine, fitted with a network card, and installed
Linux. Both UMNs gopherd server and NWU's GN combination Gopher/WWW
server compiled easily, and “Leviathan” was born. From a user's viewpoint,
Leviathan seemed to operate faster, and we hoped that it would be able to
handle a bigger user load than the Compaq. We transplanted the information
tree from the Compaq to Leviathan, and both machines ran side by side,
tangible proof that simple (and obsolete) computers could still be useful.

The initial information served via gopher included the “Master Gardener” files,
the TAEX personnel directory, and abstracts of all Extension bulletins and
leaflets. Wherever possible, we also provided the full text of these publications.
We put the TAEX Agricultural Software Catalog on line. The 200MB drive soon
filled, and a 300MB drive was added. Leviathan began performing as a bootp
and PopMail server as “extra duty”. We scanned several clip-art collections and
made them accessible. Usage grew steadily. Soon, users from all over the world
were logging in round the clock. The March 1994 access logs showed that 2,245
sites obtained almost 100MB of mostly clip-art at a rate of more than 500
accesses daily. Then, Mosaic happened.

We had been experimenting with the Mosaic WWW browser since December
1993, but it was under Linux and X-Windows that I first experienced an
implementation of Mosaic that really impressed me. Mosaic under Linux was
stable, flashy, and very useful. This caused me to review Mosaic for DOS/
Windows platforms. While not as stable and full-featured as the Unix versions,
we evaluated it as tolerable. The World Wide Web concept seemed
tremendously important, so we began demonstrating Mosaic throughout the
Agency in February 1994. Newer versions of GN had added the ability to serve a
new protocol, Hyper Text Transfer Protocol (http), which was used to tie
together a “World Wide Web” (WWW) of networked information servers. In May
1994, text pages were marked up for Hyper Text Markup Language (HTML), and
GN began responding to http requests as well as gopher users. Leviathan broke
the 1,000 accesses/10MB per day mark that month with 31,427 requests, 3,406
of which were from http (Mosaic) clients.

We added anonymous FTP access in August 1994 at the request of many users.
Leviathan began distributing the National 4-H Enrollment Management

software via gopher, http, and ftp access. In September, Leviathan also became
TAEX's departmental CCSO qi/ph maintenance client. The 2,000 accesses per
day watermark occurred in October 1994, when GN served 28,345 files (510MB)
in 63,000 accesses, of which 60% (36,000) went to gopher clients. Access rates
increased by approximately 10,000 per month in both November (72,300) and
December (83,801). December 15th's 4,570 accesses broke the previous record
of 4,370 accesses established the day before. December's average access rates
were about 2,700 per day, with 20.6MB of files retrieved daily. Gopher type
accesses still accounted for 51% of the accesses (42,371), but http accesses
increased more than gopher accesses from the previous month.

Cumulatively, between February and the end of December, Leviathan served
188,672 files (3.71 gigabytes) to 33,542 unique machines in 434,025 separate
transactions, of which 295,330 went to gopher users. During the same time,
another 4,844 files (151MB) were retrieved via anonymous ftp. Leviathan was
still serving as a bootp and PopMail server in its spare time, while accepting
logins for maintenance of our part of the University-wide CCSO “ph” directory
services database system. All this activity took place on an inexpensive
80486/33 computer sitting under a table, with neither monitor nor keyboard
attached.

Information Server Content

Leviathan is a niche server, publishing information of interest mostly to adult
distance learners and educators. We have the obligatory information describing
the organization, and searchable abstracts and texts of selected agency
publications. The clip-art collection has grown to over 1,600 individual images,
from three states, available in multiple formats, with another 999 nearly ready.
We added a small experimental slide image collection that may be accessed
through a “Contact Sheet Image Selection” imagemap using a pointing device.
The TAEX Computer Technology Group “OnLine” computer user newsletter is
available online, and the “Master Gardener Problem Solver” has been extremely
popular. The TAEX Software Catalog is available interactively and may be
downloaded in PostScript, text, HTML, and WordPerfect formats.

Leviathan also serves documents from sources external to Extension. The
Texas Telecommunications Strategic Plan and its Executive Summary are
accessible. The National Performance Review documents are available. A large
collection of Internet information, including all RFCs (Requests For Comment),
FYIs (For Your Information), and STDs (STandards Documents) to date may be
browsed. Leviathan includes convenient links to all WWW and gopher servers
and enables easy access to other Cooperative Extension information servers.
To aid others who wish to establish WWW sites, Leviathan provides a collection
of icons (some developed locally) and links to pertinent tutorial and technical
documents.

Future Directions

TAEX is preparing a newer, faster server with more storage capacity to better
serve Leviathan's users. The immense popularity of the clip art collections has
stimulated us to prepare even more. We are preparing an extensive collection
of slide images that may be distributed freely for use in demonstrations and
publications. We are updating our online personnel directory with plans to
provide color photos and sound clips of everyone in the agency for easy access
by the traditional media. The online personnel directory may someday be
linked to a “home page” for every person that includes a description of
individual expertise and experience. We are considering making several large
topical databases accessible online. The popular Master Gardener series begs
to be updated with color images, sound clips and animation sequences. We
plan to add more on-line newsletters replete with color graphics. We are
considering distributing some free software packages by gopher and http
access.

Reaching Leviathan sidebar

TAEX is working with several other departments and agencies to stimulate the
proliferation of more information servers. The South West Agricultural
Meteorological Information Service (SWAMI) has been supplying pertinent
weather information from a Sun workstation for several months. More recently,
“Monarch”, the TAEX Planning, Performance, and Accountability Server, came
on-line on a DOS/Windows platform to keep the public and state legislators
appraised of agency activities. Three of the Texas Research and Extension
Centers plan to establish information servers. Two more experimental servers
using alternative free software are currently “under construction” as TAEX
explores this evolving technology.

The combination of telecommunications and computer innovations will
together produce a technological imperative for change. This may require a
major paradigm shift from information distribution toward providing
information access. TAEX is preparing for the day when all of the information
produced and distributed by the agency may also be made available digitally
and online. With luck, it may actually be ready when the public is.

Impact of The TAEX Information Server

Leviathan has achieved some degree of national and international recognition.
The NCSU list of “Top Ten Home Pages by Cooperative Extension Workers”
points to us, as does their list of “Top Ten Extension-Related WWW Pages”.
Other Cooperative Extension services across the US and in Australia, Mexico,
India, Israel, and Czechoslovakia have downloaded clipart. A cookbook,
published in the UK by an author from Bangladesh, incorporated some of the

https://secure2.linuxjournal.com/ljarchive/LJ/012/1048s1.html

clip art as illustrations. An Australian server began mirroring Leviathan down
under. Leviathan has been mentioned in several Canadian Agricultural
publications. Leviathan was designated as a “Gopher Jewel” by several sites,
and America OnLine lists it as their first agricultural information site.

The on-line software and image distribution has cut distribution costs
considerably and made TAEX products more easily accessible. For example,
Leviathan distributed 2.6GB of clip art on-line, saving taxpayers almost $17,000,
compared to traditional floppy-based distribution methods. Each download of
the Software catalog saves $5.00 in direct printing and mailing costs and has
increased software distribution activity substantially. The National 4-H
Enrollment Management software, distributed across the Internet has saved
taxpayers more than $1,200 so far and provides more timely dissemination of
updated versions. The 500MB of “Master Gardener” files would have filled
100,000 pages if printed, but being available electronically has saved $4,000 to
date in printing costs alone. Most importantly, Leviathan has created an
awareness of information server technology as a viable adjunct to traditional
information distribution techniques.

Usage Analysis

While TAEX has received many favorable comments via e-mail, a more accurate
progress assessment can be made by analyzing user access patterns.

Between February 13 and December 31, 1994, certain trends emerged. Daily
usage patterns were high between 9:00 AM and 5:00 PM, but there were no
“dead” hours. Weekend usage was about half that of weekday usage. Mosaic
(http) access grew rapidly, but represented only 49% of Leviathan's total
accesses. Gopher access was still important in 1994. The majority (62%) of the
users were in the United States. Of these, most (67%) were from educational
institutions, 16% were from the commercial (.com) domain, and 6% were from
the government (.gov) domain. Leviathan's users were mostly (80%) from
outside the TAMU system. Some 69,476 accesses (16%) were from Texas, which
means that 84% of the requests were from out of state. Texas County
Extension Agents visited 1062 times, while 215 Texas Extension Specialists
connected 38,561 times.

Leviathan has been visited by people in 62 identifiable countries outside the
United States on six continents. There have been contacts from 793 different
educational domains in all 50 states. Delphi users accessed Leviathan 3,365
times, and America OnLine subscribers called 2,172 times. Compuserve users
finally connected 48 times in December. The server has been contacted by
1,270 individual host machines more than 50 times; 561 of these visited more
than 100 times; and 22 dropped in more than 1000 times in that period.

Lessons Learned from the Leviathan Experience

• If you build it, they will come....The demand for on-line information is
staggering.

• If you provide useful information, they will come back, repeatedly, for
more.

• Providing networked access to information is often cheaper than
traditional methods of distribution.

• Networked access to information is only useful as to those who are
networked. It should be viewed an adjunct to existing distribution
methods.

• Simple text-based information is valuable. FTP and gopher are not dead.
While the sizzle may sell the steak, content is more important than
presentation.

• Consider your audience. Ensure that documents make sense when viewed
in a text-only mode.

• Use graphics sparingly. Keep in-lined graphics small. Many users have
slow dial-up network connections.

• The Internet does not end at the state line. We now serve people in other
states and nations of the global village at no incremental cost.

• Servers must serve 24 hours a day. It is 3 PM some where on the Internet
all the time.

• Servers should not be shut down for update and maintenance. This
implies a multitasking operation.

• Graphics and audio files should be clearly identified through use of icons.
• Keep menu pages small and simple, with 5 ± 2 selections.
• Almost any old obsolete computer can be used as a server. Storage

capacity is more important than powerful CPUs.
• Current WYSIWYG editors are often harder to use than simple text editors

for producing HTML.
• Storage space and network bandwidth are both finite.
• Time costs more than equipment.
• Administering a server takes more time than expected.
• Organizing information is sometimes harder than producing it.
• Writing HTML documents is far easier than it first appears.
• We often overestimate what we can do in a week and underestimate what

we can do in a year.
• Linux is not merely a hobbyist's toy; it is a solid, stable, professionally-

implemented Unix clone that performs superbly as a production
information server platform.

Summary

Evolving telecommunications and computer technology are combining to
produce a technological imperative for change, requiring information access as
well as traditional information distribution techniques. Government agencies
will continue to be asked to provide more and better services with a shrinking
resource base. Demand for information access will likely continue to increase
for the foreseeable future, causing a corresponding demand for more network
bandwidth. The TAEX combination FTP/Gopher/WWW server demonstrates that
a low cost (> $1,500 US) computer running only free software can supply a
moderate-to-large amount of information. Usage is growing at a rate of 10,000
accesses monthly. Demand for gopher http access. FTP is still a viable and
desired method of file transfer. Information servers provide information to
inhabitants of the global village without barriers of time and distance. TAEX's
Gopher/WWW/FTP information server is a promising alternative medium for
outreach and distance learning for our changing clientele. It is a digital
extension of the agency's motto: People Helping People.

Paul M. Sittler (p-sittler@tamu.edu) is a Computer Systems Engineer for the
Texas Agricultural Extension Service. He enjoys playing with technology and
making it useful to others of his species. He received a BS and MS in Vocational/
Industrial Technical Education from Texas A&M University.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:p-sittler@tamu.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Ethernetting Linux

Terry Dawson

Issue #12, April 1995

Linux comes with the networking tools. Terry shows you how to get your Linux
system talking over Ethernet.

Many people who install Linux on a machine at their workplace or university
also wish to connect their machine to the local area network, so that they can
make use of an Internet connection or other machines on the network. If you
are one of these people and the only thing that has been stopping you is not
knowing where to start, I hope this article will demonstrate that it is easy to do
so-as long as you are properly prepared and know what things to watch out for.

The following are a few key areas to consider when connecting your Linux
machine to a network:

• The type of network you are connecting to.
• The type of network interface card (NIC) you will need.
• Configuring the kernel to support the network interface card.
• Addresses-Host, network, broadcast and router.
• Configuring Linux for your network connection.
• Routing.
• Names and nameservers.

The type of network you are connecting to is very important for a number of
reasons. Most important is the many different network types. Currently Linux
provides good support for Ethernet networks, but not much support for other
network types such as ARCNet, Token Ring, FDDI and wireless LANs. If you
intend to use an Ethernet network, keep reading. If not, don't despair—some
very promising development efforts are under way to provide support for the
other types of networks.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Ethernet

If you are fortunate enough to have an Ethernet network to connect to, then
you still have to determine what type of cabling has been installed. Two
popular types of cabling are employed, and you will need to find out which has
been installed so you can choose an appropriate type of network interface
card. The most popular cabling types are 10base2, commonly called “ThinNet”,
which uses 5mm diameter coaxial cable and BNC (bayonet type) connectors,
and 10baseT, commonly called “twisted pair” or “unshielded twisted pair”,
which uses a cable with four conductors and an RJ-45 (telephone type)
connector. The type of cabling will help determine what type of network
interface card to choose for your Linux machine.

Ethernet Card

Your network interface card needs to have a connector that suits the cabling
type you have installed. A number of modern cards come with both types of
connector, and these are generally called “combo” cards. You should also think
about whether you want a card suitable for an 8 bit slot or a 16 bit slot. The 16
bit cards perform better but are generally slightly more expensive. Another
factor to consider is the bus type. If you are using a PCI machine, naturally you
will need a NIC that suits a PCI bus. Be careful: you must also ensure that the
type of card you choose is supported by a Linux kernel driver. It is best to avoid
“clone” cards. While Linux supports some clones of popular cards, not all clones
are the same. To be sure there are no problems, obtain the genuine article or
try the card before you buy it. The Ethernet-HOWTO lists the types of cards
supported by Linux and contains descriptions of each of them. You should refer
to it before spending any money on a card.

The HOWTO recommends you opt for a 16 bit card such as the 3Com 3c503/16
or the SMC Elite 16/WD8013. Other cards which you might consider if you have
a Vesa Local Bus or PCI motherboard are the BOCA Research cards. You might
also choose an NE2000, but be careful, since some cards that claim 100%
compatibility are not 100% compatible. (Their claims are based on being “100%
software compatible”, meaning that they provide drivers for DOS that allow, for
example, NetWare access. These drivers are useless with Linux.)

Cards to avoid are the 3Com 3c501 card (it performs badly and is broken by
design) and Cabletron and Xircom cards, since free Linux drivers are unlikely
ever to be available for their products, because these companies have chosen
to require a non-disclosure agreement before releasing programming
information, which would make it illegal to write a freely distributable Linux
driver.

When installing the NIC you must make sure that the card's configuration does
not clash with any other installed hardware. Some cards come with a DOS
program to configure them. They use a programmable interface, and you
should run this to “strap” the card with the configuration you want. You should
be particularly careful of the IRQ, control port address and shared memory
address settings. Each of these must be free for your NIC to use and be unused
by any other hardware in the computer. I use a WD8003 strapped for control
port 0x280, IRQ 7 and Shared Memory 0xD0000. Be careful if you use
specialized hardware such as SCSI controllers or Multiport Serial cards, as they
often use IRQ or Control Port settings in similar ranges, and may conflict. After
you have physically installed the NIC, your next step is to check if your kernel
already has support for your card. If it doesn't, recompile it so that it does. The
easiest way to check if your kernel already supports your card is to reboot your
machine. Check that the card is properly detected by the kernel by reading the
messages the kernel prints when it is booting. If your card is properly detected,
the kernel will print a message something like:

eth0: WD80x3 at 0x280, 00 00 C0 AD 37 1C WD8003,
 IRQ 7, shared memory at 0xd0000-0xd1fff.
 wd.c:v1.10 9/23/94 Donald Becker
 (becker@cesdis.gsfc.nasa.gov)

The settings listed should match those that you configured your card for. If
your card has not been properly detected, rebuild your kernel to make sure the
kernel has support. This is pretty straightforward and you have likely done it
before. You simply change to the /usr/src/linux directory and run make config.
You will be prompted as to whether to include various drivers. The most
important sections for you to answer Yes to are:

• Networking Support?
• TCP/IP networking?
• Network device support?
• The driver for your card.

After you have configured the kernel to support all of the hardware you have
installed, you do a make dep; make to build the kernel. Don't forget to do a
make zlilo so that lilo will run your new kernel when you reboot. If you are
happy that all has gone well, then you can reboot your machine and check that
your card is properly detected as described earlier. If it isn't, double check that
you have done everything correctly and that you have no hardware conflict. If
you still have problems, refer to the Ethernet-HOWTO again, as it has lots of
information to help guide you through determining what might be the problem.

Software configuration

If you are still with me, you are nearly ready to run. All you need to run are a
few commands to start testing your network connection. After you have
configured your kernel, you have to configure your Linux machine to suit your
network. At this point you need worry about IP addresses. If you are lucky, you
will have a network administrator who will have assigned you an IP address and
told you the network and broadcast addresses to use. If not, you will have to
find out another way. A good way is often to check the configuration of another
machine that is already working. The network address is an address that refers
to the whole network you are connected to. It is advertised so that people on
other networks know how to get to you. Your host IP address is one address
that belongs to that network. This must be yours and only yours, or else you
will face lots of strange problems, so make sure you don't use a host address
someone else is already using. The broadcast address is a special address that
allows anyone to send data to everyone on your network. Some special services
use this, and it is very important that it be configured to the appropriate value.
Another important number you will need is your “netmask”. This is a
mechanism that allows your machine to determine which host addresses are
local to you (on the same network) and which ones are remote. The following
example would be typical of what you would expect to find:

IP address: 202.105.54.56
Network address: 202.105.54.0
Broadcast address: 202.105.54.255
Netmask: 255.255.255.0

Once you have this information, be sure you have the correct software on your
Linux machine. You must be particularly careful to ensure that the network
tools you have (ifconfig, route) match the version of kernel you use. The NET-2-
HOWTO describes where to get these tools and how to install them. If you run
the ifconfig program with no command-line arguments, you will see that it lists
the device mentioned in the kernel boot messages: “eth0”. This is your Ethernet
device. It needs to be configured with the information above, and the ifconfig

program is designed to do just that. Use a command line such as:

ifconfig eth0 HOST netmask NETMASK\
 broadcast BROADCAST up

So for the above example use the command line:

ifconfig eth0 202.105.54.56\
 netmask 255.255.255.0\
 broadcast 202.205.54.255 up

If you again run the ifconfig command with no command line arguments, you
should see it now has the appropriate values configured.

More configuration info

Once you have your Ethernet device configured, you have one step remaining.
As described earlier, the netmask tells your machine which addresses are local
and which are remote. If the address is local, your Linux machine can route any
datagrams directly to the Ethernet device. If they are remote, datagrams should
be sent to the route which supports the link to the rest of the Internet. The
router also has an address, so you will need to obtain this from your network
administrator. Linux keeps a special table in memory to look up where to send
datagrams. This table, called the routing table, is manipulated with the route

command. In a simple installation, as you will most likely have, you will need to
configure two routes for your Ethernet: one for your local network, and another
that tells your Linux machine what to do with datagrams for any remote host.
This latter route is called the “default” route.

The route commands are:

route add NETWORK dev eth0
route add default gw ROUTER dev eth0

and for the example listed earlier (assuming the router address is as shown):

route add 202.105.54.0 dev eth0
route add default gw 202.105.54.1 dev eth0

You can use the route -n command to display the contents of the routing table.
The -n argument says to show the addresses as numbers and not try to look up
their names, because you don't yet have your name resolver configured. To
configure your name resolver, you will need to find out the address of the
“NameServer” or “DNS” from your network administrator and put this address
in your /etc/resolv.conf file in a line that looks like nameserver

NNN.NNN.NNN.NNN, where NNN.NNN.NNN.NNN is the IP address of your
nameserver.

Now you should be able to telnet to other IP hosts, both local and remote. If
you have configured the name resolver of your Linux machine, then you can
use their names, otherwise you should use their addresses.

In addition, the Linux Network Administrator's Guide is available from
sunsite.unc.edu in the directory /pub/Linux/docs/LDP/, and can be ordered on
paper from SSC (the publishers of Linux Journal) and O'Reilly & Associates.

Terry Dawson (terryd@extro.ucc.su.oz.au) has nearly 10 years experience in
packet switched data communications, and maintains the NET-2-HOWTO and
HAM-HOWTO documents for fun. Terry is keen to see Linux used widely in
Amateur Radio applications.

https://secure2.linuxjournal.com/ljarchive/LJ/012/1051s1.html
mailto:terryd@extro.ucc.su.oz.au

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Programming Hints

Eric Kasten

Issue #12, April 1995

Building shared libraries for Linux is often considered a black art. In this article,
Eric explains five simple steps to producting a standard Linux shared library
and tells the cuious where to find more information

Shared libraries are probably most often used because they allow for the
creation of shared executables, which take less disk space. They also allow the
compression of multiply defined global variables into a single instance of the
variable that all program modules share. Also possible is the creation of a
compatible, drop-in replacement for an existing shared library. Improvements
or fixes in the replacement library are then immediately available to
executables the library is linked with. This last possibility is beyond the scope of
this article.

Dynamically linked libraries (DLLs) have become an important part of the Linux
system. Even though ELF (the executable and linking format designed for Unix
SVR4), which makes creating shared libraries trivial, is just over the horizon, the
current a.out DLL shared libraries will probably need to be supported for some
time. In many cases, older versions of Linux will still need support, and
commercial a.out libraries may require that an executable be built using a.out

DLLs, because a.out libraries and ELF libraries cannot be mixed in one
executable. Until ELF makes its way from the alpha releases of Linux into the
more stable releases required for a production environment-and probably
even after that-a.out shared libraries will continue to be built and used.

Provided with the source code for a static library, a shared version of the library
can be created by completing five well defined steps. This article will explain
how to apply these steps to create a simple shared library. Its aim is to help you
understand shared libraries and how they are built, so you can successfully
create more complicated shared libraries in the future.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Background

This article assumes the use of gcc 2.6.2 and DLL tools 2.16 with libc 4.6.27.
Other versions may have slightly different syntax or may operate differently. All
these items may be obtained by anonymous ftp from tsx-11.mit.edu in /pub/

linux/packages/GCC/ (tools-2.16.tar.gz is in the src directory). Follow closely all
the installation instructions in the release notes, or unnecessary problems may
result.

Shared libraries consist of two basic parts: the stub and the image. The stub
library has an extension of .sa. The stub is the library an executable will be
linked to. It provides redirection of shared functions and variables to the
location where the real shared functions and variables reside in memory. The
library image has an extension of .so, followed by a version number.

The library image contains the actual executable functions used by binary
programs. The image also contains two tables of particular note: the jump table
and the global offset table (GOT). The jump table contains eight-byte entries
which redirect a call to a shared function from the jump table to the real
function. The jump table exists to provide a method for creating compatible
replacement libraries. Since each function has an entry of fixed size in the jump
table, the jump table can provide an entry point for these functions at a
location that remains constant between revisions of a library. This allows
previously linked executables to continue to function without recompilation.
The global offset table functions for global variables as the jump table does for
library functions.

Each shared library is loaded at a fixed address between 0x60000000 and
0xc0000000. If an executable is linked to two or more shared libraries, the
libraries must not occupy the same address range. If two libraries should
overlap, the location an executable is redirected to may not contain the
expected function or variable. A list of registered shared libraries can be found
in the tools 2.16 distribution in the directory doc/table_description. Examine
this file when defining the load address for a new shared library to ensure that
it doesn't conflict with the address for an existing library. In addition, you
should probably register the address space used by a new shared library so
that future libraries will not conflict with it. Registration is particularly important
if the library is to be distributed.

Before Beginning

As mentioned earlier, this procedure is directed at the creation of a simple
shared library. Although the steps for building a more complex library are the
same, the process of modifying multiple or complex makefiles can become
somewhat confusing. For your first attempt it is a good idea to select a library

which has all the library source in a single directory. A good choice may be the
JPEG library, which can be retrieved by anonymous FTP from ftp.funet.fi with
file name /pub/gnu/ghostscript3/jpegsrc.v5.tar.gzi. Or you could create several
simple source code modules and a makefile to compile and build a static
library. This test library need not do anything useful, since it is only for
educational purposes. However, since you will already understand the inner
workings of the build process, you can avoid the effort of attempting to
understand another program's makefile logic. Also, be sure that a static version
of the library can be successfully compiled before approaching the construction
of a shared one.

Step One: Setup

The method presented here is not the only way to create a shared library, but it
has often proved successful. It provides, in the form of a file to include in the
makefile, a simple record of the parameters and the method used to build a
particular library. First, create the file that will be included in the makefile; call it
Shared.inc. The file should look something like:

SL_NAME=libxyz
SL_PATH=/usr/local/lib
SL_VERSION=1.0.0
SL_LOAD_ADDRESS=0x6a380000
SL_JUMP_TABLE_SIZE=1024
SL_GOT_SIZE=1024
SL_IMPORT=/usr/lib/libc.sa
SL_EXTRA_LIBS=/usr/lib/gcc-lib/i486-linux\
 /2.6.2/libgcc.a -lc
SHPARMS=-l$(SL_PATH)/$(SL_NAME)\
 -v$(SL_VERSION) \
 -a$(SL_LOAD_ADDRESS) \
 -j$(SL_JUMP_TABLE_SIZE) \
 -g$(SL_GOT_SIZE)
VERIFYPARMS=-l$(SL_NAME).so.$(SL_VERSION) -- \
 $(SL_NAME).sa
CC=gcc -B/usr/bin/jump
pre-shlib: $(LIBOBJECTS)
shlib-import:
 buildimport $(SL_IMPORT)
shlib: $(LIBOBJECTS)
 mkimage $(SHPARMS) -- $(LIBOBJECTS)
$(SL_EXTRA_LIBS)
 mkstubs $(SHPARMS) -- $(SL_NAME)
 verify-shlib $(VERIFYPARMS)

The first section consists of a series of variable definitions. These variables have
the following meanings:

SL_NAME

The name of the library which is being built.

SL_PATH

The location where the shared library will live.

SL_VERSION

The library version.

SL_LOAD_ADDRESS

The absolute address in memory where the library will be loaded.
(Examine the table_description file provided with the DLL tools to make
sure this address doesn't overlap with another library).

SL_JUMP_TABLE_SIZE

The size of the jump table. (Give this any value for the moment; an
appropriate value will be determined later).

SL_GOT_SIZE

The size of the global offset table. (Give this any value for the moment; an
appropriate value will be determined later).

SL_EXTRA_LIBS

Other libraries which are required to build the shared image.

SL_IMPORT indicates other shared libraries to import symbols from. These
imported symbols are used to help direct global variable references to their
proper locations in other shared libraries. The libraries specified here should be
any shared libraries which are required to build the target library. The target
shlib-import makes use of a /bin/sh script called buildimport, which is invoked
with SL_IMPORT as a parameter. The build import script should contain the
following commands:

#!/bin/sh
echo -n > $JUMP_DIR/jump.import
for lib in $*;
 do nm --no-cplus -o $lib | \
 grep '__GOT__' | sed 's/__GOT__/_/'\
 > $JUMP_DIR/jump.import
done

This script uses nm, grep and sed to extract the symbols from the global offset
tables of each of the stub libraries specified on the command line to create a
file called jump.import (the nm command sequence is excerpted from “Using
DLL Tools With Linux”). Be sure to chmod u+x buildimport. SL_EXTRA_LIBS are
libraries which will be required to successfully build the library. Usually most of
these libraries can be determined by examining a makefile which builds an
executable using this library (often there are test programs included with the
source for the library). libgcc.a is required with gcc 2.6.2; if it is left out, there
will be an unresolved reference for _main. It is usually necessary to explicitly
specify libc with -lc. If there should be unresolved references when the library
image is made, chances are that a required library was omitted.

The definition of CC as gcc -B/usr/bin/jump is telling the compiler to use an
assembler called /usr/bin/jumpas instead of the default assembler. Be sure to
check what other parameters are specified in the original makefile (and
whether CC was defined as the compiler variable) and make additions and
changes as necessary. CC is nearly always defined, and thus has been used in
this example. If you use a version of DLL tools earlier than version 2.16, it may
be necessary to specify CC as gcc -B/usr/dll/jump/.

The targets pre-shlib and shlib both have LIBOBJECTS as dependencies. You will
probably find a list or a variable containing a list of the library dependencies in
the target for the static library in the original makefile. You should define
LIBOBJECTS as this list of dependencies, or you should replace all instances in
Shared.inc with the dependencies specified for the static library. Take care
when constructing a dependency list for a shared library; it is not uncommon
for source code modules to be compiled even though they are not part of the
final library. The only objects that should be compiled during the building of a
shared library are those that will eventually become part of the library. If other
objects are compiled, the symbols and globals used in those modules will end
up in the jump configuration files for the library, and possibly in the library
itself. These undesirable functions and variables may result in troublesome
behavior or failure of the library build process.

In general, make sure you understand how the library object files are built.
Also, make certain that the shared library objects are built using the same flags
and options that were present for the original library. Now edit the library
makefile (make a backup first), and add the following statement to the end of
the list of makefile targets:

 include Shared.inc

Finally, from the source directory of the library, do the following:

 mkdir jump
 JUMP_LIB=libxyz
 export JUMP_LIB
 JUMP_DIR=`pwd`/jump
 export JUMP_DIR

These commands create a work directory for the DLL tools and assembler, and
set the necessary environment variables which are required to successfully
build a shared library. It will be necessary to use setenv if a csh variant is in use.
Remember to replace libxyz with the name of the target library (as specified in
SL_NAME).

Step Two: The First Compile

Before each compile remove the old .o files to ensure that the object code is
rebuilt. Executing a make clean may be sufficient; however, be careful-many
makefiles will remove more than the .o files and you may need to reconfigure
the source code. Often an rm *.o will work more dependably.

If everything has been set up properly, it should now be possible to begin the
first compile by entering:

 make pre-shlib

This step compiles the library using the assembler prefixed by the -B switch.
This will extract the necessary symbols from the library source into a file called
jump.log. From jump.log, the global variables and functions will be extracted
into the necessary configuration files where the DLL tools will find them. Once
all the source has been compiled, change to the directory that was specified in
JUMP_DIR. Jump.log should be in this directory. Now execute the following:

 getvars
 getfuncs
 rm -f jump.log

These commands will create the files jump.vars and jump.funcs. jump.vars

contains a list of the global variables found during the compile, while
jump.funcs contains a list of functions. If, for some reason, you don't want to
export a symbol found in jump.funcs or jump.vars, move the entry to a file
called jump.ignore in the JUMP_DIR directory. Be sure to remove any entries
added to jump.ignore from the original file. Now return to the compile
directory.

Step Three: Importing Symbols

Now you should create the jump.imports file. Since a target was previously
defined in Shared.inc, simply enter:

 make shlib-import

There now should be a file called jump.imports in the JUMP_DIR directory.
Nothing needs to be done with this file; it will be used to determine which
global variables should be located in one of the imported libraries.

Step Four: The Second Compile

The second compile is necessary to determine the sizes of the global variables.
The sizes of the globals must be known so that the GOT pointers can be set

properly. Remove the .o files from the previous compile and then do the
following:

 make pre-shlib

Now change to the JUMP_DIR directory and execute:

 getsize > jump.vars-new
 mv jump.vars jump.vars-old
 mv jump.vars-new jump.vars

Step Five: Building The Library

Before actually building the shared image and stub libraries, the jump table and
GOT must be allocated enough storage for all the existing functions and global
variables as well as for functions or globals that may be added in revisions to
the library. To determine the required number of bytes for the jump table and
the GOT, execute the following:

 wc -l $JUMP_DIR/jump.funcs
 wc -l $JUMP_DIR/jump.vars

Multiply the resultant line counts by 8 to calculate a lower bound for the
number of bytes required for existing functions and global variables,
respectively. These values should be padded significantly to allow for future
library expansion. Now edit Shared.inc and replace the settings of
SL_JUMP_TABLE_SIZE and SL_GOT_SIZE with the values just determined. If you
receive an overflow message while building the image, increase these values.
Keep in mind that these sizes should be multiples of 8, and that the values
calculated are minimums, and will probably not be sufficient to build the library
image.

Now everything should be ready to actually build the shared image and stub.
Without removing the .o files, execute:

 make shlib

This will first build the image, and then the stub library. Then the stub and
image will be verified to check that the libraries were built properly. If all goes
well, the last message should be something like:

Used address range 0x6a37f020-0x6a395020 be aware! must be unique! The
stub library and the sharable libraries have identical symbols.

The address range indicated in the first line is somewhat misleading, since a
load address of 0x6a380000, not 0x6a37f020, was specified. This is normal.
However, make note of the last address since it indicates the last address used
by the library. This address is usually padded somewhat to make sure that

room is left for expansion. The address range might be recorded as
0x6a380000-0x6a395fff or 0x6a380000-0x6a39ffff, depending on how much
space might be required in the future.

The second line indicates that the image and stub libraries were built correctly.
If the verification process should indicate that the stub and image differ, an
error has occurred. Possibly one of the most common errors is when the
JUMP_LIB environment variable and SL_NAME don't match. Double check that
these two variables match if there should be a problem. If everything has gone
correctly there should now be a stub and image library. The image should be
copied to the directory specified by SL_PATH and the stub should be placed
where it can be found by the compiler and linker. Once these files have been
copied to their final directories, enter:

 ldconfig -v

There should be output similar to the following, indicating that ldconfig has
created a symbolic link for the new library in which the name only contains the
major version number. This is done because a look-up on the library is done
using only the major version number.

 libxyz.so.1 => libxyz.so.1.0.0 (changed)

If ldconfig doesn't find the library, make sure that the directory in which the
library is located is included in the list in /etc/ld.so.conf. It should now be
possible to make use of the new library. Shared.inc, jump.vars, jump.funcs,

jump.import and jump.ignore should be saved. These files will be useful if you
need to rebuild the library or create a compatible replacement.

Trail's End

This article has outlined a method for creating a simple shared library from
scratch. This basic method provides a starting point for understanding and
constructing a shared library. Many other topics are covered and more depth is
presented in “Using DLL Tools With Linux” by David Engel and Eric Youngdale.
This document can be found in the doc directory provided with the tools 2.16
distribution. Information on both DLLs and ELF can also be found in the GCC
FAQ, which can be retrieved via anonymous ftp from www.mrc-apu.cam.ac.uk

as file /pub/linux/GCC-FAQ.

Eric Kasten (tigger@petroglyph.cl.msu.edu) has been a systems programmer
since 1989. Presently, he is pursuing his masters in computer science at
Michigan State University, where his research focuses on networking and
distributed systems. Well thought out comments and questions may be
emailed to him.

mailto:tigger@petroglyph.cl.msu.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

What's GNU

Arnold Robbins

Issue #12, April 1995

This month's column concludes the article on Plan 9 From Bell Labs, and those
parts of it that have been re-implemented in freely available software.

Last month we described the origins of Plan 9, the sam editor, and the 9term

terminal emulator. Well, what about the shell to run inside the window? Here
too, the Plan 9 authors took the opportunity to rethink the issue of just how
should a shell work. The Plan 9 shell is called rc, because it “runs commands”.

The rc Shell

Although in many ways the Bourne shell is a simple, elegant, high-level
programming language, it has a serious flaw, in that it was designed to be much
like a macro-processing language. Input text is scanned, rescanned, and
rescanned again, as each stage of processing is performed. (This is carried to an
almost absurd length in the Korn shell, with something like eleven different
processing stages.) This leads to rather complicated and baroque quoting rules,
with the need for nested escape sequences.

In rc, the input text is scanned and parsed exactly once. The language has a real
yacc-based grammar, making it clear what everything means. The quoting rules
are very simple. Quoted text must be enclosed between single quotes. To get a
single quote inside a quoted string, double it (as in FORTRAN). An explicit
operator is used to provide string concatenation, and variables can be lists of
strings, not just single strings.

The syntax is closer to that of C or awk, instead of Bourne's Algol 68. This leads
to less clutter, avoiding unnecessary keywords and semi-colons. It is much
more like C than the fabled csh is.

rc provides shell functions, and signal handlers are written as functions with
special names (sighup, sigterm, etc.), instead of using strings. I/O redirection is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

also more powerful, with a notation for hooking up file descriptors besides 0
and 1 to the input and output ends of a pipe.

A freely distributable clone of rc is available. It was written by Byron Rakitzis,
and implements the language described in the rc paper, with some extensions.
The beauty of rc is that it is small and fast, and shell programs can be quite
elegant. It also runs on just about any kind of Unix system.

When using rc with 9term, it is conventional to set the primary prompt to be
just a single semi-colon, and the secondary prompt to be empty. This allows
you to snarf entire commands, including the prompt, and resend them. The
semi-colon is treated as a simple null statement. The use of double-clicking to
select the whole line, and the default saved action of the menus make sending
and resending the same line over again extremely simple; most of the work can
be done with just the mouse.

The Resources sidebar lists the ftp location of the rc shell. There is also a
mailing list of people who use rc.

The es Shell

es is the “extensible shell”. Paul Haahr and Byron Rakitzis thought it would be
interesting to try and combine some of the capabilities of functional languages
with those of Unix shells. Many internal capabilities of the shell (such as I/O
redirection and setting up pipelines) are available as built-in functions in the
language, and program fragments can be passed around as arguments to
functions.

es provides first class functions, lexical scope, an exception system, and rich
return values (i.e. functions can return values other than just numbers). Most of
this is beyond the scope of this article to explain. es is described in a paper in
the Winter 1993 Usenix Conference Proceedings. It helps to read this paper,
and also to go through the archives of the mailing list to see how the language
evolved. For the full details on es, you'll need to read the paper, the man page,
and the file initial.es in the es distribution. It is a good idea to also look at the
sample .esrc file, too.

Basically, the idea behind es is to take the primitive operations that a shell
does, such as forking processes, creating pipes, and setting up I/O redirections,
and make them available as functions that a user program can call directly. In
turn, traditional shell syntax is built on top of these primitive operations.

Lexical scoping allows you to save the definition of an operation, and then
replace it with your own operation on top of the previous one. Here is an
example from the paper on es. This code implements a pipeline profiler. It

https://secure2.linuxjournal.com/ljarchive/LJ/012/0062s1.html

saves the definition of %pipe, which creates pipes, and provides a new one that
times each component of the pipeline, using the old %pipe to actually create
the pipeline. (es is the prompt from es used for examples in the paper. The
default prompt is a semi-colon.)

es > let (pipe = $fn-%pipe) {
 {
 fn %pipe first out in rest {
 {
 if (~ $#out 0) {
 time first
 } {
 $pipe { time $first } $out
$in { %pipe $rest }
 }
 }
es> cat paper9 tr -cs a-zA-Z0-9 '\012' | sort |
 uniq -c | sort | -nr sed 6q
213 the
150 a
120 to
115 of
109 is
 96 and
 2r 0.3u 0.2s cat paper9
 2r 0.3u 0.2s tr -cs a-zA-Z0-9 \012
 2r 0.5u 0.2s sort
 2r 0.4u 0.2s uniq -c
 3r 0.2u 0.1s sed 6q
 3r 0.6u 0.2s sort -nr

This is a simple example, yet it illustrates some of the power available in es. es

really deserves a column on its own. For more information, see the above
sources and the mailing list archive.

The sidebar lists the ftp location for es, and a mailing list is also available.

The 9wm Window Manager

The tools we've seen so far, notably sam and 9term, are built on top of X
Windows, and work with any window manager. For some time, I ran them using
mwm.

In the fall of 1993, I obtained a version of gwm, the Generic Window Manager,
with WOOL (Windows Object Oriented Lisp) code that implemented an
interface very similar to that of the original Bell Labs Blit terminal. This provides
a simple, clean interface, similar to that used on Plan 9 (8½ can be considered a
further evolutionary step from the Blit). This code was written by John Mackin
at the University of Sydney. The resources sidebar shows where you can get
this code, if you're interested. This code works, but it is large and slow.

However, a new window manager recently became available, 9wm. 9wm

implements the window management policies of 8½, under X windows. Written
by David Hogan at the University of Sydney, it uses raw Xlib (not a pretty sight),

and is completely ICCCM compliant. 9wm is also small, and very fast. To quote
from the README file:

9wm is an X window manager which attempts to
emulate the Plan 9 window manager 8½ as far as
possible within the constraints imposed by X. It
provides a simple yet comfortable user interface,
without garish decorations or title-bars. Or icons. And
it's click-to-type. This will not appeal to everybody, but
if you're not put off yet then read on. (And don't knock
it until you've tried it).

9wm is “click to type”. This means you have to move the mouse into a particular
window and then click button one. That window becomes the current window,
indicated by a thick black border. Other windows have a thin black border. This
behavior is identical to sam's.

The 9wm menu (accessed through button 3 on the root window) consists of five
items:

• New - open a new window (9term or xterm if no 9term)
• Reshape - change the shape of a window on the screen,
• Move - move a window,
• Delete - blow away a window,
• Hide - “iconify” a window.

What is perhaps most noticable about 9wm (and 8½) is that there are no icons.
Instead, to remove a window from the screen, you select Hide from the main
menu. The cursor becomes a target. You move the target to the window to be
hidden, and then click button 3. Clicking any other button cancels the
operation.

When a window is hidden, it disappears from the screen completely, not even
leaving an icon. Instead, a new item appears at the bottom of the button 3 9wm

menu, with the name of the window. To open the window again, you simply
select the window's name from the menu.

As with the other programs, the 9wm menu remembers what you did last time,
so that the next time you pop up the menu, the previous selection is already
highlighted

The 9menu Command Line Menu Program

And now, my own small contribution to the picture. The GWM Blit emulation,
which I used for quite awhile, understood that it was built on top of X, and
when you selected New, it gave you a menu of hosts (that you defined in a

configuration file) on which to start remote xterms. This was nice, and I found it
missing under 9wm.

(In Plan 9, this is not an issue; the multiple hosts in the network are very tightly
integrated, but in X with Unix, it is a problem.)

What I wanted was a simple program to which you could give menu items and
associated commands, and this program would pop up a window that was
nothing but a menu. Selecting an item would run a command. The program
would be long lived, leaving the menu up permanently. A program close to this
exists, xmenu. Unfortunately, xmenu goes away after executing the command,
and is not well behaved when interacting with 9wm.

Inspired by 9wm, starting with its menu code, and with help from David Hogan,
I wrote 9menu. 9menu pops up a window containing the list of items, and
executes the corresponding command when a button is pressed.

9menu allows you to write your own menus and customize the behavior to suit
you, without the headaches of a .twmrc or .mwmrc file. It is real easy to have
one item spawn another 9menu, giving a similar effect to pull-right menus.

Here are two I use it: one for remote systems, the other for programs I may
want to run. Being lazy, I have xterm in both. I use a shell script named rxterm

that knows about the remote hosts I will want to open windows on, and
whether they can start a 9term or an xterm. (This is left over from the GWM Blit
code, and is mostly for convenience.) These examples are from my .xinitrc. The
-geometry strings are to get 9wm to place the windows even though they start
out iconified.

9menu -geometry 67x136-4+477 -iconic -popdown -label Remotes \
 'solaria:rxterm solaria.cc.gatech.edu' \
 'burdell:rxterm burdell.cc.gatech.edu' \
 'chrome:rxterm chrome.cc.gatech.edu' \
 'xterm:rxterm xterm' \
 exit &
9menu -geometry 103x102-3+624 -iconic -popdown -label 'X programs' \
 'xterm:rxterm xterm' \
 xtetris xlock '9wm restart' '9wm exit' exit &

I start the programs using -iconic so that they'll be automatically hidden and
part of the 9wm menu. The -popdown option causes the menu to automatically
iconify itself after an item is selected, since I find this to be the most convenient
way for me to work: pop up the menu, select an item, and then go on with what
I want to do without the menu hanging around. Although not nearly as large
scale a program as sam, 9term, or 9wm, I find that 9menu completes the
package for me.

Experiences

I have been using this environment for almost two years, and find it to be clean,
elegant, and easy to use. Initially, I started by using rc, and then sam when it
became available in early 1993. Shortly after that, I started beta-testing 9term,
in particular getting it to work correctly under SunOS. In the fall of 1993, the
GWM Blit code became available, and I switched to that, using it for almost a
year. In the spring of 1994, I started beta-testing 9wm, which was finally
released at the end of 1994. I switched to es in January of 1993 after reading
about it and hearing the presentation at the winter Usenix.

The research group at Bell Labs is well known for applying the “small is
beautiful” principle to software design. This was initially true of Unix, and has
been re-applied to distributed systems, shells, and user interfaces with Plan 9.

The interface is simple, consistent, easy to use, and very clean. All the programs
described in this column behave the same way, in terms of what the buttons
do, which window is current, and how the menus remember the previous
operation.

An important point that I have not emphasized so far, is that all the programs
use pop-up menus. I find this to be an enormous convenience, particularly
compared to systems like Windows or the Macintosh, where you must move
the mouse to the menu bar to pull down a particular menu. Pop-up menus
save an incredible amount of otherwise useless mouse motion, leading to a
system that is much easier to use.

My first exposure to window systems was long ago, on a Blit terminal. The
interface was simple, clean and elegant. Ever since then, I had been searching
for an X windows environment that matched the Blit's elegance. Now, with the
combination of sam, 9term, 9wm and rc or es, I feel that I have finally found
that environment, and I'm very happy. What's even nicer is that all of these
programs are fast, and I have the broad range of X applications available to me
also (xoj, anyone?). This latter point is unfortunately not true of the only other
alternative, mgr (which I used until 9term became available.

Using These Programs Under Linux

All the programs described here can be made to compile under Linux. I don't
have a Linux system of my own (believe or not!), but for a while I borrowed one,
and was able to bring up all of these programs. Unfortunately, the system was
a laptop, with too small a screen to make using X worthwhile. sam comes up
fine, using the Make.solaris makefile as a starting point. 9wm also compiled just
fine. 9term took a little bit of work, but it did compile and run. After asking on
the mailing lists, I learned that 9term does not (yet) work quite correctly under

Linux. This may be fixed by the time you read this column, though. Two people
to contact for information about porting 9term to Linux are Pete Fenelon
(pete@minster.york.ac.uk), and Markus Friedl (msfriedl@faui01.informatik.uni-
erlangen.de). rc and es, both compile and run under Linux, but with some work.
For rc, you have to generate the sigmsgs.c file by hand, based on /usr/src/linux/

include/sys/signal.h. There is one other bug, reported by Jeremy Fitzhardinge,
which is that rc uses ints for the array of additional groups, while Linux uses
gid_ts, which are shorts. es requires similar changes for the signal handling, but
these are actually documented in the Makefile.

Summary

The combination of 9term and 9wm provides a very close emulation of the
elegant Plan 9 user interface. sam is a powerful, easy to use editor. rc is a
simple, clean shell, and es is a nifty shell with lots of promise. It is worth reading
the papers describing each of these components. The complete combination
proves once again that “small is beautiful.”

Acknowledgements

Thanks to Chris Siebenmann and Daniel Ehrlich, maintainers of the various
mailing lists, for their help, as well as to the members of the lists who
responded to my questions about Linux. Thanks to Bob Flandrena, Paul Haahr,
and Miriam Robbins for their comments.

References

• Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, “Plan 9
from Bell Labs”, Proc. of the Summer 1990 UKUUG Conf., London, July,
1990, pp. 1-9.

• Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, “Plan 9, A
Distributed System”, Proc. of the Spring 1991 EurOpen Conf., Troms, May,
1991, pp. 43-50.

• Rob Pike, “The Text Editor sam”, Software—Practice and Experience,
November 1987, Vol. 17, #11, pp. 133-153.

• Rob Pike, “8½, the Plan 9 Window System”, Proc. of the Summer 1991
Usenix Conf., Nashville, June 1991, pp. 257-265.

• Tom Duff, “Rc—A Shell for Plan 9 and UNIX Systems”, Proc. of the Summer
1990 UKUUG Conf., London, July, 1990, pp. 21-33.

These papers are all available in Postscript as part of the Plan 9 documentation.

• Paul Haahr and Byron Rakitzis, “Es: A shell with higher-order functions”,
Proceedings of the Winter 1993 Usenix Conf., January 1993, pp. 53-62.

mailto:pete@minster.york.ac.uk
mailto:msfriedl@faui01.informatik.uni-erlangen.de
mailto:msfriedl@faui01.informatik.uni-erlangen.de

This paper is available for ftp along with the es source code.

Arnold Robbins (arnold@gnu.ai.mit.edu) is a professional programmer and
semi-professional author. He has been doing volunteer work for the GNU
project since 1987 and working with Unix and Unix-like systems since 1981.
Questions and/or comments about this column can be addressed to the author
via postal mail c/o Linux Journal, or via e-mail.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:arnold@gnu.ai.mit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Cooking with Linux: Amsterdam on Fifty Guilders a Day

Matt Welsh

Issue #12, April 1995

If you happen to be visiting Amsterdam for business, leisure, or, say, and
International Linux Symposium, these important travel tips might come in
handy.

Ah, Europe. There's no place like it. Except for, maybe, certain neighborhoods in
Chicago, but there it's easier to get through customs. At any rate, not long ago I
had the privilege to speak at the International Linux Symposium in Amsterdam,
which is a small town in upstate New York. Ha ha! Just kidding. I'm talking about
the version of Amsterdam found in the Netherlands, of course, which is a large
city with a lot of canals and people who speak Dutch. When I first heard about
the conference, I was certainly interested but perhaps not very optimistic about
my ability to find a few thousand dollars worth of change between the sofa
cushions. Then something dawned on me: would I ever have another legitimate
excuse to visit Amsterdam? Probably not, so I managed to pull off the travel
expenses and hop on a plane to the fair city of canals. En route I even managed
to pull together a talk about applications porting, but I had a lot of help from
the flight crew.

Well, needless to say, I had such a wonderful time in Amsterdam that I feel it's
my moral duty to share with you the many varied pieces of travelling wisdom
that I accumulated during the week-long adventure. Otherwise you might run
into the same problems that I did, while I was there, and let me tell you up front
that it's not much fun to be yelled at (in Dutch, no less) by a very angry waiter
wielding a fork and knife. With the handy tidbits contained in this article, you
should be able to handle the situation with ease. (Hint: whenever possible, use
the Dutch phrase Hoe laat opent het zwembad? I have no idea what it means,
but it seems to calm people down.)

Amsterdam is a nice place to go if you enjoy being run over. Michael K. Johnson,
LJ's illustrious editor, and I learned this the hard way as soon as we stepped out
of the RAI train station from the airport. There we were, trying to get our

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

bearings, taking in the countryside, observing the locals, etc., standing in what
appeared to be an innocent walkway. Walkway? Fat chance. This was none
other than the bicycle lane, which is widely regarded as one of the most
dangerous places on the face of the Earth to stand with a map and five large
pieces of luggage. Later, we discovered that standing in the bike lane is a capital
crime in the Netherlands—that is, if you don't get killed in the act.

So, there we were, looking like your canonical tourists, when a moped
screamed by doing 80 KPH (that's 3 million miles per hour, for those of you in
the US), nearly knocking Michael into the road, which is a lot like the bike lane
except that the vehicles there are much more deadly. In fact, the crosswalks in
Amsterdam have lights marked with the international symbols for “Don't Walk”
and “Good Luck”. Crossing the street is always an adventure, and well worth the
price of the trip alone, in case you're into near-death experiences.

All cab drivers in Amsterdam are certified maniacs. After discovering the
dangers of being a pedestrian (the Dutch word for which is, literally, “bumper
fodder”) I wanted to see what it was like on the other side of the wheel and
opted for travel by taxicab whenever possible. The first thing to realize here is
that you can't hail a cab in Amsterdam, but you can call for one. Another big
surprise is that the Dutch have perfected teleportation technology,
demonstrated by the fact that no later than thirty seconds after you hang up
the phone, a cab will materialize in front of you. This is certainly convenient,
especially when you happen to call from your hotel room.

I was sure that I'd feel safer taking the cab, somehow lulled into a false sense of
security by the fact that I'd be riding in the comfort of a six-ton shuddering
hunk of metal with an alert, safety-conscious driver at the wheel. Wrong again.
Taxicab drivers in Amsterdam are required, by law, to scare the hell out of their
passengers at least twice during the trip. Tipping the driver didn't seem to help,
either. But what a thrill! Humming along at 120 KPH, weaving in and out of
heavy traffic, surviving at least a dozen near-misses with unwary pedestrians
(ha!) and other vehicles (including streetcars), with a driver who's more involved
in finishing his cigarette and staring out of the side window while changing the
radio than, say, holding onto the steering wheel. I don't know about you, but
this is what I call excitement. I was so impressed that I was alive and in one
piece after the trip that I paid the driver twice the amount of the actual fare. So
taking the taxi in Amsterdam gets high marks in my book.

Be very, very careful when ordering food. Although nearly everyone I met in
Amsterdam spoke at least seven languages, including English, this fact didn't
seem to help at the local pubs and restaurants. I would routinely enter such an
eating establishment and be presented with a menu listing such enticing items
as hutspot met klapstuk, uitsmijter, and pijptabak. Being completely ignorant of

the local language and custom, I stuck to the more obvious choices such as
koffie, broodje, pannekoek, and bier-the last of which turned out to be a
reliable default. But I do recommend being brave and ordering entrees at
random. You might end up with a wonderful culinary delight such as a piece of
white toast, as I did. Before you know it you'll learn what not to order.

Another thing: don't let waitresses at Indonesian restaurants constantly serve
you their fun 'n' fruity mixed drinks during the course of the meal, because
they'll turn out to be ten guilders a pop. One caveat with this approach: after
several of aforementioned drinks, you may not notice them being served. Be on
your guard at all times!

The red light district isn't for the faint of heart. Unless, of course, you're into
places with names such as the Banana Bar, but I need not go into detail here.
On the other hand, the red light district was the home of the most wonderful
Spanish restaurant, which we, the teeming mob of mad Linuxers, took over and
held all of the chefs for ransom. Just kidding! We were actually served a
delightful five-course meal without the necessity of holding the head waiter at
gunpoint. At least I think it was five courses-I stopped counting after three. Just
imagine the scene: a restaurant full of nearly a hundred Linux users, including
such shining figureheads as Remy Card, Fred van Kempen, and Linus Torvalds
himself, chowing down on enough Spanish food to feed the armada, having a
riotous good time discussing the pros and cons of, say, multiple filesystem
block sizes. The amount of geekiness in that room was so thick you could cut it
with a knife. I had to duck out routinely for a breath of fresh air-but alas, I was
trapped in the back alleys of Amsterdam's most visceral neighborhood. Bon
appetit!

You can find the finest coffee in the world in Amsterdam. Really! Scattered all
over town are many gourmet coffee shops, wherein the dark brew is served in
large quantities. If you think that's interesting, you'll really enjoy the lavish style
of these bistros, with their foil-covered ceilings, subdued lighting, and pictures
of Bob Marley adorning the walls. Very bizarre. While I won't pretend to
understand the Dutch taste in coffee shop decor, I will vouch for the quality of
coffee served within-something you won't want to miss while in Amsterdam.

Well, there you have it. I hope that the above advice will help you to get around
Amsterdam in better shape than I did. Oh, and one last bit of guidance for your
trip: No matter what anybody tells you, it really is fun to get lost amongst
narrow, winding streets with names like Leiuweijkstraat and Geifen von
vijkeslaan at three o'clock in the morning. Try it some time. You'll thank me
later.

Matt Welsh (mdw@sunsite.unc.edu) is a writer and programmer at Cornell
University, working with the Linux Documentation Project.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mdw@sunsite.unc.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The ELF Object File Format: Introduction

Eric Youngdale

Issue #12, April 1995

The Executable and Linking Format (ELF) has been a popular topic lately. People
wonder why the kernel configuations script asks whether or not to donfigure
loading ELF executables. As ELF will eventually be the common object file
format for Linux binaries, it is appropriate to document it a bit. This month, Eric
introduces us to ELF, and next month he will give us a guided tour of real ELF
files.

Now that we are on the verge of a public release of ELF file format compilers
and utilities, it is a logical time to explain the differences between a.out and ELF,
and discuss how they will be visible to the user. As long as I am at it, I will also
guide you on a tour of the internals of the ELF file format and show you how it
works. I realize that Linux users range from people brand new to Unix to
people who have used Unix systems for years—for this reason I will start with a
fairly basic explanation which may be of little use to the more experienced
users, because I would like this article to be useful in some way to as many
people as possible.

People often ask why we are bothering with a new file format. A couple reasons
come to mind—first, the current shared libraries can be somewhat
cumbersome to build, especially for large packages such as the X Window
System that span multiple directories. Second, the current a.out shared library
scheme does not support the dlopen() function, which allows you to tell the
dynamic loader to load additional shared libraries. Why ELF? The Unix
community seems to be standardizing this file format; various implementations
of SVr4 such as MIPS, Solaris, Unixware currently use ELF; SCO will reportedly
switch to ELF in the near future; and there are rumors of other vendors
switching to ELF. One interesting sidenote—Windows NT uses a file format
based upon the COFF file format, the SVr3 file format that the Unix community
is abandoning in favor of ELF.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Let us start at the beginning. Users will generally encounter three types of ELF
files—.o files, regular executables, and shared libraries. While all of these files
serve different purposes, their internal structure files are quite similar. Thus we
can begin with a general description, and proceed to a discussion of the
specifics of the three file types. Next month, I will demonstrate the use of the
readelf program, which can be used to display and interpret various portions of
ELF files.

One universal concept among all different ELF file types (and also a.out and
many other executable file formats) is the notion of a section. This concept is
important enough to spend some time explaining. Simply put, a section is a
collection of information of a similar type. Each section represents a portion of
the file. For example, executable code is always placed in a section known as
.text; all data variables initialized by the user are placed in a section known as
.data; and uninitialized data is placed in a section known as .bss

In principle, one could devise an executable file format where everything is
jumbled together—MS-DOS binaries come to mind. But dividing executables
into sections has important advantages. For example, once you have loaded
the executable portions of an executable into memory, these memory locations
need not change. (In principle, program executable code could modify itself,
but this is considered to be extremely poor programming practice.) On modern
machine architectures, the memory manager can mark portions of memory
read-only, such that any attempt to modify a read-only memory location results
in the program dying and dumping core. Thus, instead of merely saying that we
do not expect a particular memory location to change, we can specify that any
attempt to modify a read-only memory location is a fatal error indicating a bug
in the application. That being said, typically you cannot individually set the read-
only status for each byte of memory—instead you can individually set the
protections of regions of memory known as pages. On the i386 architecture the
page size is 4096 bytes—thus you could indicate that addresses 0-4095 are
read-only, and bytes 4096 and up are writable, for example.

Given that we want all executable portions of an executable in read-only
memory and all modifiable locations of memory (such as variables) in writable
memory, it turns out to be most efficient to group all of the executable portions
of an executable into one section of memory (the .text section), and all
modifiable data areas together into another area of memory (henceforth
known as the .data section).

A further distinction is made between data variables the user has initialized and
data variables the user has not initialized. If the user has not specified the initial
value of a variable, there is no sense wasting space in the executable file to
store the value. Thus, initialized variables are grouped into the .data section,

and uninitialized variables are grouped into the .bss section, which is special
because it doesn't take up space in the file—it only tells how much space is
needed for uninitialized variables.

When you ask the kernel to load and run an executable, it starts by looking at
the image header for clues about how to load the image. It locates the .text

section within the executable, loads it into the appropriate portions of memory,
and marks these pages as read-only. It then locates the .data section in the
executable and loads it into the user's address space, this time in read-write
memory. Finally, it finds the location and size of the .bss section from the image
header, and adds the appropriate pages of memory to the user's address
space. Even though the user has not specified the initial values of variables
placed in .bss, by convention the kernel will initialize all of this memory to zero.

Typically each a.out or ELF file also includes a symbol table. This contains a list
of all of the symbols (program entry points, addresses of variables, etc.) that
are defined or referenced within the file, the address associated with the
symbol, and some kind of tag indicating the type of the symbol. In an a.out file,
this is more or less the extent of the information present; as we shall see later,
ELF files have considerably more information. In some cases, the symbol tables
can be removed with the strip utility. The advantage is that the executable is
smaller once stripped, but you lose the ability to debug the stripped binary.
With a.out it is always possible to remove the symbol table from a file, but with
ELF you typically need some symbolic information in the file for the program to
load and run. Thus, in the case of ELF, the strip program will remove a portion
of the symbol table, but it will never remove all of the symbol table.

Finally, we need to discuss the concept of relocations. Let us say you compile a
simple “hello world” program:

 main()
 {
 printf("Hello World\n");
 }

The compiler generates an object file which contains a reference to the function
printf . Since we have not defined this symbol, it is an external reference. The
executable code for this function will contain an instruction to call printf, but in
the object code we do not yet know the actual location to call to perform this
function. The assembler notices that the function printf is external, and it
generates a relocation, which contains several components. First, it contains an
index into the symbol table—this way, we know which symbol is being
referenced. Second, it contains an offset into the .text section, which refers to
the address of the operand of the call instructions. Finally, it contains a tag
which indicates what type of relocation is actually present. When you link this
file, the linker walks through the relocations, looks up the final address of the

external function printf, then patches this address back into the operand of the
call instruction so the call instruction now points to the actual function print.

a.out executables have no relocations. The kernel loader cannot resolve any
symbols and will reject any attempt to run such a binary. An a.out object file will
of course have relocations, but the linker must be able to fully resolve these to
generate a usable executable.

So far everything I have described applies to both a.out and ELF. Now I will
enumerate the shortcomings of a.out so that it is more clear why we would
want to switch to ELF.

First, the header of an a.out file (struct exec, defined in /usr/include/linux/

a.out.h) contains limited information. It only allows the above-described
sections to exist and does not directly support any additional sections. Second,
it contains only the sizes of the various sections, but does not directly specify
the offsets within the file where the section starts. Thus the linker and the
kernel loader have some unwritten understanding about where the various
sections start within a file. Finally, there is no built-in shared library support—
a.out was developed before shared library technology was developed, so
implementations of shared libraries based on a.out must abuse and misuse
some of the existing sections in order to accomplish the tasks required.

About 6 months ago, the default file format switched from ZMAGIC to QMAGIC
files. Both of these are a.out formats, and the only real difference is the
different set of unwritten understandings between the linker and kernel. Both
formats of executable have a 32 byte header at the start of the file, but with
ZMAGIC the .text section starts at byte offset 1024, while with QMAGIC the .text

section starts at the beginning of the file and includes the header. Thus ZMAGIC
wastes disk space, but, more importantly, the 1024 byte offset used with
ZMAGIC makes efficient buffer cache management within the kernel more
difficult. With a QMAGIC binary, the mapping from the file offset to the block
representing a given page of memory is more natural, and should allow for
some performance enhancements in the kernel. ELF binaries are also
formatted in a natural way that is compatible with possible future changes to
the buffer cache.

I have said that shared library support in a.out is lacking—while this is true, it is
not impossible to design shared library implementations that work with a.out.
The current Linux shared libraries are certainly one example; another example
is SunOS-style shared libraries which are currently used by BSD-du-jour.
SunOS-style shared libraries contain a lot of the same concepts as ELF shared
libraries, but ELF allows us to discard some of the really silly hacks that were
required to piggyback a shared library implementation onto a.out.

Before we go into our hands-on description of how ELF works, it would be
worthwhile to spend a little time discussing some general concepts related to
shared libraries. Then when we start to pick apart an ELF file, it will be easier to
see what is going on.

First, I should explain a little bit about what a shared library is; a surprising
number of people look at shared libraries as sort of black boxes without a good
understanding of what goes on inside. Most users are at least aware of the fact
that if they mess up their shared libraries, the system can become nearly
unusable. This leads most people to treat them with a certain reverence.

If we step back a little bit, we recall that non-shared libraries (also known as
static libraries) contain useful procedures that programs might wish to make
use of. Thus the programmer does not need to do everything from scratch, but
can use a set of standard well-defined functions. This allows the programmer to
be more productive. Unfortunately, when you link against a static library, the
linker must extract all library functions you require and make them part of your
executable, which can make it rather large.

The idea behind a shared library is that you would somehow take the contents
of the static library (not literally the contents, but usually something generated
from the same source tree), and pre-link it into some kind of special executable.
When you link your program against the shared library, the linker merely
makes note of the fact that you are calling a function in a shared library, so it
does not extract any executable code from the shared library. Instead, the
linker adds instructions to the executable which tell the startup code in your
executable that some shared libraries are also required, so when you run your
program, the kernel starts by inserting the executable into your address space,
but once your program starts up, all of these shared libraries are also added to
your address space. Obviously some mechanism must be present for making
sure that when your program calls a function in the shared library, it actually
branches to the correct location within the shared library. I will be discussing
the mechanics of this for ELF in a little bit.

More info about ELF

Now that we have explained shared libraries, we can start to discuss some of
the general concepts related to how shared libraries are implemented under
ELF. To begin with, ELF shared libraries are position independent. This means
that you can load them more or less anywhere in memory, and they will work.
The current a.out shared libraries are known as fixed address libraries: each
library has one specific address where it must be loaded to work, and it would
be foolish to try to load it anywhere else. ELF shared libraries achieve their
position independence in a couple of ways. The main difference is that you

https://secure2.linuxjournal.com/ljarchive/LJ/012/1059s1.html

should compile everything you want to insert into the shared library with the
compiler switch -fPIC. This tells the compiler to generate code that is designed
to be position independent, and it avoids referencing data by absolute address
as much as possible.

Position independence does not come without a cost, however. When you
compile something to be PIC, the compiler reserves one machine register (
%ebx on the i386) to point to the start of a special table known as the global
offset table (or GOT for short). That this register is reserved means that the
compiler will have less flexibility in optimizing code, and this means that it will
take longer to do the same job. Fortunately, our benchmark indicates that for
most normal programs the drop in performance is less than 3% for a worst
case, and in many cases much less than this.

Another ELF feature is that its shared libraries resolve symbols and externals at
run time. This is done using a symbol table and a list of relocations which must
be performed before the image can start to execute. While this sounds like it
could be slow, a number of optimizations built into ELF make it fairly fast. I
should mention that when you compile PIC code into a shared library, there are
generally very few relocations, one more reason why the performance impact is
not of great concern. Technically, it is possible to generate a shared library from
code that was not compiled with -fPIC, but an incredible number of relocations
would need to be performed before the shared library was usable, another
reason why -fPIC is important.

When you reference global data within a shared library, the assembly code
cannot simply load the value from memory the way you would do with non-PIC
code. If you tried this, the code would not be position independent and a
relocation would be associated with the instruction where you were attempting
to load the value from the variable. Instead, the compiler/assembler/linker
create the GOT, which is nothing more than a table of pointers, one pointer for
each global variable defined or referenced in the shared library. Each time the
library needs to reference a given variable, it first loads the address of the
variable from the GOT (remember that the address of the GOT is always stored
in %ebx so we only need an offset into the GOT). Once we have this, we can
dereference it to obtain the actual value. The advantage of doing it this way is
that to establish the address of a global variable, we need to store the address
in only one place, and hence we need only one relocation per global variable.

We must do something similar for functions. It is critical that we allow the user
to redefine functions which might be in the shared library, and if the user does,
we want to force the shared library to always use the version the user defined
and never use the version of the function in the shared library. Since the
function could conceivably be used lots of times within a shared library, we use

something known as the procedure linkage table (or PLT) to reference all
functions. In a sense this is nothing more than a fancy name for a jumptable, an
array of jump instructions, one for each function that you might need to go to.
Thus if a particular function is called from thousands of locations within the
shared library, control will always pass through one jump instruction. This way,
you need only one relocation to determine which version of a given function is
actually called, and from the standpoint of performance this is about as good
as you are going to get.

Next month, we will use this information to dissect real ELF files, explaining
specifics about the ELF file format.

Eric Youngdale Eric Youngdale has worked with Linux for over two years, and
has been active in kernel development. He also developed the current Linux
shared libraries.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Mr. Torvalds Goes to Washington

Kurt Reisler

Issue #12, April 1995

Linux Torvalds will be speaking at eh Spring US DECUS Symposium in
Washington D.C. this May.

Once again, the US Chapter of DECUS, the DEC Users Group, is bringing Linus
Torvalds, famous for his work with Linux (and for feeding Australian penguins)
to the Spring US DECUS Symposium. This event is scheduled for the week of
May 6-11 at the convention center in Washington DC.

Unlike what we did at the Spring `94 Symposium in New Orleans (where Linus
gave a couple of technical talks), we are planning an entire day of Linux-related
sessions on Wednesday, and a half-day seminar by Linus himself on Thursday.
The Linux stream and seminar are going to be specially priced to make them
easier to attend. In addition, we are going to have several Linux systems
available in the UNIX SIG Campground, as well exhibits from a variety of Linux
vendors.

Why should you be interested in this conference? Well, Linux does run on a
large number of the PC platforms that Digital sells and supports. In addition,
Digital (and Linus) are working on a port of Linux to the Alpha AXP architecture
(imagine your Linux system running at 300+ MIPS). Digital has announced that
an advance developer's kit (ADK) for the Digital Alpha PC is available on
gatekeeper.pa.dec.com. One of the scheduled sessions deals with that porting
effort.

Why else? Well, this is a rare opportunity to see and listen to Linus Torvalds,
outside of Europe and Down-Under. Combine that with the rest of what is
being offered at the Spring 95 US DECUS Symposium, and you have a
conference well worth attending.

For additional information on the Spring `95 DECUS US Symposium is available
in the US DECUS home page at www.decus.org, or request a registration kit by

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.decus.org

sending e-mail to information@decus.org, or giving the DECUS office a call at
1-800-DECUS-55.

Kurt Reisler (klr@umbc.edu) is the Chair of the DECUS UNIX SIG, the captain of
the UNISIG International Luge Team, and a collector of teddy bears. Although
he has been running Linux for only a year, he has been involved with UNIX for
the past 18 years.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:information@decus.org
mailto:klr@umbc.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A review of InfoMagic's December 1994 Release

Caleb Epstein

Issue #12, April 1995

The three CD-ROMs are packed full of up-to-date Linux distributions,
documentation, source code and even a “live” file system you can run your
system from.

You can find everything you need, whether you're using or installing Linux for
the first time or you know the ropes like a veteran. For the proto-Linuxer, the
distribution comes complete with a 28-page, CD-sized, Quick Start Guide which
is based on Matt Welsh's Linux Installation HOWTO. The three CD-ROMs are
packed full of up-to-date Linux distributions, documentation, source code and
even a “live” file system you can run your system from. The aptly named
“Developer's Resource” is a great value.

InfoMagic delivers three CD-ROMs full of Linux and Linux-related software with
their latest offering, the December-pressed Linux Developer's Resource.

What You Get

The first disc comprises the on-line documentation (HOWTOs), DOS utilities,
and InfoMagic's large collection of Linux distributions. They provide JE-0.9.3
(Japanese Extensions to Linux), MCC-1.0+, Slackware-2.1.0, SLS-1.06,
TAMU-1.0D, and BOGUS-1.0.1. Some of these distributions aren't as up-to-date
as others, particularly the smaller ones such as MCC and TAMU, but that is
simply because they haven't been updated recently, not because InfoMagic is
shipping stale software. Other directories on this disc contain a DOS-based
installation program and a copy of Microsoft's Multimedia Viewer with the
HOWTOs compiled just for it.

On the second disc you'll find mirrors of the SunSite Linux FTP archive (ftp://
sunsite.unc.edu/pub/Linux), Alan Cox's Linux networking archive (ftp://
sunacm.swan.ac.uk/pub/misc/Linux/Networking), and the “live” file system,
which is a fully unpacked copy of the Slackware 2.1.0 distribution. In theory,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

and with a suitably fast CD-ROM drive, you should be able to run off of the “live”
file system on this disc and a small root partition on your hard drive. Since
InfoMagic can't know which packages you wish to use from the CD, it is up to
you to set up the “link farm” on your root partition which points to directories
on the disc (i.e. ln -s /cdrom/live/usr/local /usr/local).

The last disc contains copies of the tsx-11 Linux FTP archive (ftp://
tsx-11.mit.edu/pub/linux), the official Linux kernel archive up to and including
kernel version 1.1.72 (ftp://ftp.cs.helsinki.fi/pub/Software/Linux/Kernel) and the
Free Software Foundation FTP archive (ftp://prep.ai.mit.edu/pub/gnu). To avoid
keeping redundant copies of the XFree86 X Window System with both the
tsx-11 and SunSite directories, InfoMagic has chosen to split this large
component out into its own directory. Releases 2.1.0, 2.1.1, and 3.1 are
available.

Also on the last disc are the Debian-0.91 distribution; Japanese HOWTO
documents; the Wine Microsoft Windows emulator archive; a Scheme
interpreter; and the Oberon system, an object oriented programming and
operating environment. There are also some demos of commercial products:
the Unix Cockpit, an X-based file manager and Executor, a Macintosh emulator
which runs under Linux (or doesn't - Executor doesn't seem to work under 1.1.x
Linux kernels, which prevented me from testing it). There is also FlagShip, a CA/
Clipper-like development system, and a self-described “early demo” of a
commercial BBS system for Linux, called Zbbs.

This distribution has everything you need, whether you're installing Linux for
the first time or you know the ropes like a veteran and want to update your
system. There's plenty of documentation in all sorts of formats, from the easily
printed to the easily browsed. The handy Quick Start Guide is an excellent
primer for the novice Linux user. It covers such important topics as device
naming, drive partitioning, and file system creation. When coupled with
InfoMagic's wide array of Linux distributions, you've got everything you need to
install Linux on your PC.

I find that distributions like this make for excellent emergency backup media.
They contain recent copies of all of the major Linux distributions (pick your
favorite) as well as more recent stuff which you can cull from the Linux and
GNU sources on discs 2 and 3 and compile for yourself. If you're interested at
all in Unix or are a code junkie like myself, this is the package for you.

Using the Discs

I've been using Linux for about two years and have it installed on my PC at
home. I've got two hard drives on my system, an IDE drive where I keep all of
my DOS and Windows stuff, and a larger SCSI drive that I use for Linux. To test

drive the Developer's Resource, I decided that I'd clear out two non-essential
partitions from my Linux disk and install a couple of different distributions in
their stead. I backed up the old partitions with my tape drive and got down to
work.

I had enough room for a single 185 MB partition on which I could install a
distribution. With this amount of disk space I knew I could install plenty of
software, but I'd need to pick and choose to some degree because the
distributions I was looking at are pretty large.

Because I'd tried it once before with an earlier InfoMagic release, I decided to
first install Slackware on my newly-unified ext2fs partition. I figured I'd probably
be able to get a full system up and running in an hour or so. I wasn't
disappointed. I was able to put together a boot/rootdisk combination for my
system in about five or ten minutes, most of this time taken up by the writing of
the disk images to floppies. I popped in the boot floppy, rebooted, and got
down to business. Using the colortty rootdisk, I was greeted with nice looking
color dialog boxes which make the installation procedure look very
professional.

Slackware's setup routine found the existing swap and ext2fs file systems on
my SCSI hard drive. I told it to ignore the ones I didn't want to touch (the /, /usr,

and /usr/local of my pre-existing system) and to use the new partition I had set
up as its root file system. My MS-DOS file systems were also found and I added
these to the file system table without a hitch, even though I wanted them
mounted as /dos/c , /dos/d , and /dos/e which is a bit out of the ordinary.

I then installed all of the packages I was interested in (just about all of them)
and rebooted. My system came up right away and I was able to log in as root

and add myself as a user to the system. One thing I noticed after the
installation was that my new partition was almost completely full. I installed
almost every package in the Slackware distribution and was left with something
shy of 10 MB free space on my 185 MB partition. A minimal installation - no
TeX, games, etc.—would be a good deal smaller, but 185 MB is obviously not
quite enough room for the whole of Slackware to fit comfortably.

One minor complaint I have about Slackware is its treatment of manual pages.
They are stored in compressed, pre-formatted form (i.e. in /var/catman instead
of /usr/man), which saves disk space but limits your flexibility. I like having the
manual page sources around, so I can format the output for viewing on a
terminal, or an X display, or turn them into DVI or PostScript files. With only the
pre-formatted pages at your disposal, you're stuck with ASCII (or ISO-8859-1)
and a baroque system whereby underlining is denoted by a combination of
underscores and backspaces interspersed between the characters. Yuck.

Because this installation went so easily and was so trouble-free for me, I
thought I should try out some other distributions and compare them to what I
felt was an extremely polished and professional Slackware release. I didn't run
it for long, since I wanted to check out BOGUS too.

It's Not BOGUS

Having read a bit about the BOGUS Linux distribution when it was announced, I
decided to try it out next. The BOGUS distribution is maintained by Rik Faith,
Doug Hoffman, and Kevin Martin and is billed as hacker-centric system for
experienced Linux users. The BOGUS installation process requires more of a
hands-on approach than does the Slackware one, but the extra work involved is
not difficult and should come easily to anyone familiar with administering Unix
or Linux systems. The handy little QuickStart guide is also a good tutorial for
this sort of thing.

The README file for the BOGUS 1.0 distribution (additional files and docs to
upgrade from 1.0 to 1.0.1 are also on this disc) is pretty short and doesn't do
much hand holding. You're instructed to partition your drive for root, swap,
user, and some optional partitions but not told how to do so. This might
frighten away the casual user but will have the hacker licking his or her chops.
You might also refer to the QuickStart guide as it provides an excellent tutorial
on the process. I would try it with my large root partition and my pre-existing
swap and see what happen.

After rebooting, I found the design of Kevin Martin's boot floppies intriguing. As
with most distributions, the boot disk loads into a RAM disk so that it runs
quickly and doesn't wear out your floppy drive. The contents of the second
floppy are also loaded into the 4 MB RAM disk by typing get_files once the
system has finished booting. Once the second disk has been loaded, you've got
everything you need to set up and install your new system (or recover from a
crash) and you're free to use the floppy drive for other things. This isn't for low-
end systems, though, as the documentation says that 12 to 16 MB RAM are
required.

BOGUS relies heavily on a utility called pms , Rik Faith's excellent Package
Management System, to do most of the installation work for the rest of the
distribution. A script called /usr/src/install.all is used to install the BOGUS
packages on your system. This is simply a shell script with a bunch of calls to
pms in it.

The pms program looks for its package files in a directory called /usr/src/DIST .
Seeing as I was working with limited disk space, I decided to fool BOGUS by
pointing a symbolic link at the directory on the CD containing the 1.0
distribution files and let the install script chug away. It worked like a charm. The

process ran to completion but somewhere in one of the last couple of packages
I had run out of disk space. It turns out that the 185 MB I had budgeted is not
enough for a complete BOGUS distribution. Had I read all of the documentation
beforehand, I would have found that it requires about 205 MB in toto.

The packages which hadn't been installed were completely non-essential (some
X-based games as it turned out) so I wasn't too worried. I did a bit of snooping
around and found that pms keeps a log of all of the packages which have been
installed in the directory /var/adm/pms . For each package there is a time
stamp file with information about when that package was installed. For the
packages being installed when my disk ran out of space, the timestamp files
were empty. When I figured this out, it was a simple matter of using pms -d to
remove all traces of the semi-installed packages. I made even more room by
deleting more stuff I knew I wouldn't be using (TeX-related, mostly).

The 1.0.1 release of BOGUS requires you either to install it on top of an existing
BOGUS-1.0 distribution or to overwrite outdated package files in the
distribution directory with their newer counterparts before running install.all . I
realized I'd wasted time installing some of the packages from 1.0, but this was
only after the installation was complete and I'd done the cleanup described
above.

Changing my symlink to point to the new packages in the ADDITIONS directory,
I set about upgrading my new BOGUS-1.0 system to 1.0.1. This was also done
by means of a pms wrapper script and some direction from the README file. I
had freed up enough disk space earlier to allow the upgrade to go smoothly
without filling up my disk.

I now rebooted and was greeted with the BOGUS boot sequence. For those
keeping score at home, BOGUS seems to give a nod to the BSD camp,
particularly where the boot procedure is concerned. The system start-up scripts
are called /etc/rc.* instead of the /etc/rc.d/* you'll find most other places. The
messages reminded me of Sun's messages.

I found a minor bug: /bin/passwd wasn't setuid root. This meant that a normal
user couldn't change his or her password. BOGUS also seems to lack any batch
commands for adding users. I couldn't find any, but I might not have looked in
the right places. The pms tool is, in my opinion, excellent. It is used to build the
system binaries from the 95 MB of sources and patches, all of which are
available on the disc, and to install the resulting packages on your system when
it is done. A very impressive piece of work.

Despite the Spartan nature of the installation instructions and the lack of a nifty
user interface, BOGUS is an extremely full-featured and well-rounded

distribution. The emphasis is definitely on the software developer who has a
powerful system and not the casual user. Inasmuch as InfoMagic calls this a
“Developer's Resource”, I think there should be a wide audience for BOGUS.

Caleb Epstein (epstein_caleb@jpmorgan.com) lives in Brooklyn and works at J.P.
Morgan in New York City. He has been using Linux at home for over two years,
and is looking for other Linux users in the area to join him for a not-so-virtual
beer at the local micro.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:epstein_caleb@jpmorgan.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Xfig

Robert A. Dalrymple

Issue #12, April 1995

Need figures and charts? Robert shows us how to get here with a Linux system.
Guess how he did the figures for this article?

Need a schematic diagram for a paper? How about a floorplan of a house? A
title page for a report? Or do you need to add text to an existing PostScript
figure? Xfig can do all that. Xfig (facility for interactive generation of figures
under X11) is a drawing program that provides a powerful (forget Windows
Paintbrush!) tool to get the look you want.

Figure 1

Typing xfig brings up a window with a variety of panels. You make (and edit)
drawings with the tools along the left side of the window as shown in Figure 1.
The top half of the column is the drawing modes panel. It includes tools for
creating two types of circles (starting at the center - the left choice - or starting
with a point on the circle), ellipses (same options), a variety of splines (that go
through your points or near control points), arcs, line segments, open and
closed figures and text. You can also import PostScript figures to embed in your
drawing. Any figures that you make can then be moved, scaled, flipped, copied
to other parts of the drawing, or rotated using the editing mode panel.

To make a circle, click your cursor on the left circle tool in the drawing mode
panel. Now move to the drawing canvas and click again. This places the center
of the circle at that point. Now move the cursor in any direction until the
growing circle on the canvas is the size you want. Click the left mouse button
again to fix the circle in place. If you don't like it, click the right mouse button
and the circle disappears, allowing you to start over. (Or you can select the
undo button on the top line of the window.) To pick a different shape, click on
another drawing mode tool. Most of the other drawing tools work about the
same way.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/012/1043f1.jpg

If you are the least bit unhappy with your figure, edit it using the editing mode
panel. Individual objects can be moved by use move mode: click the left mouse
button on the object, move the cursor to the new location and click again. (The
right mouse button cancels the move.) Clicking on some types of objects brings
up an edit panel, which allows for micro-adjustments to the shape and
characteristics of the object. Figure 2 shows the edit panel that corresponds to
the upper blue box of Figure 1.

Figure 2

The box is blue, as is the lower box, but the intensity is 60%, while the lower
box is 95%. Using the edit panel, the color could be changed to seven others
(counting black and white) and the intensities can be varied. The point box
shows the x and y coordinates. Each value may be changed by editing the
boxes. For other shapes, such as a polyline (made of a connected series of line
segments), individual points can be moved, subtracted or added to change the
shape of the line.

Text fonts, line thicknesses, and colors all can be changed before drawing an
object by using the indicator panel at the bottom of the Xfig window. These
buttons change according to the mode you have chosen. One neat feature is
the smart-links mode used when moving objects. Lines connecting boxes in
your figure expand or shrink with the movement of a box, keeping everything
connected. This helps when you want to move things in flow and organizational
charts.

The man pages for Xfig serve as a complete user's manual, providing much
more detail than I have here. You can print them with man -t,xfig| lpr -Plp , with
the - t , providing a formatting appropriate for a PostScript printer named lp .
Besides describing all the features, the man page provides details about
changing the default parameters. I aliased xfig to xfig -P -e ps -startf 16 , so that
my default export parameters are portrait rather than landscape on the
PostScript formatted page, and the font size starts up at 16, instead of the 12
point default size.

Xfig will export your drawing in a variety of formats, such as PostScript, Latex
(and PicTex), X11 bitmap (xpm), PIC and HPGL, for printing or including into a
document - in color and with the fonts you want. You can do the exporting from
within Xfig or via postprocessing using fig2dev , which comes with Xfig.

fig2dev -L ps NAME.fig NAME.ps converts NAME.fig to a PostScript file,
NAME.ps. The other valid graphics language (-L) options are box, epic, eepic,
eepicemu, ibmgl, latex, null, pic, pictex, ps, pstex, pstex_t, textyl, and tpic.

https://secure2.linuxjournal.com/ljarchive/LJ/012/1043f3.jpg

To add extra flourishes to your drawing, trying using xpaint along with xfig.
Xpaint is a simple-to-use paint program, written by David Koblas, that will
import xbm (X11 bitmap) from xfig and save the result in a variety of formats,
including PostScript. Figure 3 gives an example of effects that you can add to
Xfig-generated drawings with Xpaint.

Figure 3

Xpaint comes up with a toolbox filled with a variety of painting tools. The file
button opens a new canvas, retrieves an old canvas, or imports a figure. Once
the canvas is open, a palette is presented for colors and patterns at the bottom.
Getting around xpaint is very simple and a credit to its designer.

Getting Xfig sidebar

Robert A. Dalrymple teaches coastal engineering at the University of Delaware.
His address is rad@coastal.udel.edu ; also coastal.udel.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/012/1043f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/012/1043s1.html
mailto:rad@coastal.udel.edu
http://coastal.udel.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Quarter Century of Unix

Danny Yee

Issue #12, April 1995

Salus has chosen and edited his source material well, however, and inserted his
own summary and exposition in appropriate places. The result is a great read,
with the voices of the various creators providing unique perspectives on the
events they participated in (some scores of people are quoted from at length).

• Author: Peter H. Salus

• Publisher: Addison-Wesley 1994

• ISBN: 0-201-54777-5

• Reviewer: Danny Yee

• Summary: From Space Travel to Plan 9 and Linux

A Quarter Century of Unix is a history of Unix, a kind of annotated collection of
reminiscences. It begins at the “birth” of Unix, with Ken Thompson looking for a
machine to play Space Travel on, then jumps back to provide the context, both
in the history of computing in general and in the particular setup at Bell Labs.
Part two describes the work done up to 1974, both on Unix and on the tools
and language (C) so closely associated with it. Part three tries to pin down some
of the things that made Unix unique: its style, the strong contributions by users
and user groups, and the key role of some of its more famous tools. Parts four
and five trace the expansion of Unix: the development of BSD and the
commercial Unixes, the creation of SUN, the ambivalent relationship with DEC,
legal issues and attempts at standardization. The final section offers an
overview of the current status of Unix in its many different versions and offers
some ideas about where it is heading. There is also a very brief glance at some
of the systems that it has influenced, including Bell Lab's new Plan 9 system.
The finale has Dennis Ritchie, Brian Kernighan and others offering their ideas
on what made Unix work. Particularly noteworthy is the solid treatment of legal
issues (three chapters altogether) and the coverage of events outside the
United States (in Australia, Europe and Japan).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The format of A Quarter Century of Unix, with most of the text in the form of
extended quotations, runs the risk of discontinuity and lack of focus. Salus has
chosen and edited his source material well, however, and inserted his own
summary and exposition in appropriate places. The result is a great read, with
the voices of the various creators providing unique perspectives on the events
they participated in (some scores of people are quoted from at length).

I did spot a few minor inconsistencies in the text—on page 155 we read “It was
32V that became 3BSD in 1979”, though the Unix versions tree on page 61
shows no such influence—and errors—on page 253 we have “It was clear that
AT&T hadn't objected to other derivatives: Linux, MINIX, etc. In the autumn of
1988...”, implying that Linux existed in 1988 (and Linus' name is misspelled in
the index, too). But these are just quibbles. A more weighty criticism would be
that the book sometimes reads more like myth than history, with the
participants portrayed like epic heroes. (It's rather obvious that Salus himself is
a Unix fan.) This may worry the historians, but in a way it is the legends and
myths that are the most influential, so the distinction is perhaps moot.

A Quarter Century of Unix doesn't assume specialized knowledge, but the more
you know about Unix (and to a lesser extent, about architectures and operating
systems) the more you will get out of it—if you've never used awk, for example,
you will probably have little interest in reading about its origins and
development. The main audience will be programmers, administrators, and
users with extensive Unix experience. Historians and sociologists of the
computer industry will find Salus' work an essential source of primary material,
and marketing types might well learn a thing or to from it. A Quarter Century of
Unix should be a great success; it's just unfortunate that it wasn't written years
ago!

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Mosaic Handbook for the X Window System

Morgan Hall

Issue #12, April 1995

I suspect that the Mosaic Handbook for the X Window System was written more
for completeness than for a clearly defined audience.

• Authors: Dougherty, Komen, and Fergeson

• Publishers: O'Reilly & Associates

• ISBN: 1-56592-695-3

• Reviewer: Morgan Hall

Why read a book review? Perhaps the most fundamental reason is to judge
whether or not to spend time or money, or both. With this in mind, a reviewer's
responsibility is to judge whether or not a particular book is worth the time or
effort, or to whom a book would be worthwhile. Perhaps this bit of
philosophical musing may alert you to the fact that my feelings are mixed
about this particular book.

I suspect that the Mosaic Handbook for the X Window System was written more
for completeness than for a clearly defined audience. The general tone and
approach are more suited to an MS-Windows or Mac user than to the typical
Linux user. The lack of Linux software on the packaged CD-ROM further
supports this suspicion. We're a strange breed, a mixture of knowledge and
naivety, and probably not easy to characterize.

Let's look at what the book contains, then see who would most benefit from it.

The Mosaic Handbook for the X Window System is a “trade paperback”--the
familiar soft cover binding we know well. Inside the back cover is a CD-ROM
containing software for Digital, Hewlett Packard, IBM AIX, Silicon Graphics, and
Sun machines. Notable by its absence are binaries for Linux or any other “PC-
Unix”, such as BSD386 or SCO UNIX.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The book itself starts with an explanation of the internet, the services available
on the internet, how client-server software works, and a short history of the
World Wide Web (WWW from here on). In addition, it explains why O'Reilly and
Associates developed the Global Network Navigator and their view of the net
and where it will develop.

Chapter two is concerned with the Mosaic program itself. It asserts that only a
SLIP or PPP connection can run mosaic over a dialup line (no, the book never
mentions TERM). A quick explanation of how to start up Mosaic, and the book
sends the reader straight to O'Reilly's Global Network Navigator to learn the
basics of Mosaic. The last half of chapter two is where the beginner to Mosaic
can really learn how to use the program.

Chapters three and four are mainly concerned with using Mosaic to prowl the
net. Chapter three introduces the reader to various parts of the web; chapter
four concentrates on other services, such as archie, WAIS, news, FTP, and
telnet.

Chapters five and six are concerned with Mosaic, the program. Chapter five
covers customizing Mosaic; chapter six deals with Mosaic and multimedia.

Chapter seven is a brief (and quite useful) introduction to creating simple
documents with HTML. It explains how hypertext works, the basic structure of
simple hypertext documents, and the minimal set of tags that a new HTML
author needs to get started. Serious exploration will quickly go beyond the
scope of this explanation, but it's a good start for someone who's totally new to
the game. Also, in chapter seven is a brief explanation of an HTML editor and
syntax checker, HoTMetaL. I haven't yet tried to find a Linux implementation of
it, but it looks like a useful tool. Chasing this goes on the To Do list....

Chapter eight looks toward the future. It asks (and tries to answer, in part),
“Where is the Web going?” An interview (that originally appeared in GNN
NetNews) with MIT's Michael Dertouzos discusses the evolving WWW
standards, the W3O project from CERN.

Finally, the book concludes with four appendices: A is the Mosaic Reference
Guide, B is the HTML Reference Guide, C is the list of X resources used by
Mosaic, and D is concerned with installing Mosaic. Appendix D emphasizes the
CD-ROM supplied with the book, but also mentions obtaining copies from the
net and building from source code.

Having not read the companion volumes for Microsoft Windows and the
Macintosh, I can only speculate that most of the content is the same. However,
the general tone and level of detail make it almost certain.

The Mosaic Handbook for the X Window System is a well-written, informative
book. However, it is not targeted at the Linux community. In my opinion, the
users most likely to get maximum use from this book will be new users who are
approaching the net for the first time. Linux users will have to exercise their
network skills to get source or binaries (sunsite has both normal and term-
aware copies of Mosaic). I'd recommend borrowing a copy to find the nuggets
of information that it contains, but can't, in good conscience recommend that
you run right out and buy a copy.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #12, April 1995

Readers sound off.

Linked Lists

I have been using Linux for a couple of years now, and when I saw your
magazine I immediately subscribed. I love it.

Only ONE downside.

...continued on page 46 ...continued on page 44

What's the story with this format? I've got to find it one of the most annoying
techniques that magazines use, and cannot personally figure out a reason for
it. Skipping a page because of a full page ad is fine-I even scan the ad if it looks
interesting. The Economist, a weekly magazine that calls itself a newspaper and
runs over 100 pages, does NOT do this and I find it much easier to follow the
content and spirit of what the author is trying to get across. Everyone else is
breaking up their articles into linked lists-a big drag.

What motivates you to make reading your excellent magazine a chore?

—Graham R. Leach g_leach@pavo.concordia.ca

LJ Responds:

Only one downside? That's pretty good...

We do it only as much as is strictly necessary. Several things determine the
need to do this. The first is that we do not impose exact article length limits on
our authors, which means that the articles don't come out anywhere near even
pages much of the time, and the numbers of advertisements of different sizes
may not fit the empty spaces. The second is that we have decided that all one

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:g_leach@pavo.concordia.ca

page or more articles must start at the top of a page; we tried not doing that
and it looked awful. Another consideration is to start “important” articles near
the front of the magazine. Readers expect to find them there but that means
that something must be continued to the back half of the magazine. The last
consideration is that some articles require color, and we have only so many
color pages to work with per issue. The magazine is made up of a number of
16-page “forms” or “signatures” and, in some cases, color is only present on one
side of the form. This means that we have to link through the color pages for
ads and articles that contain color and then print the non-color material on the
other pages. Right now, printing in all color is not affordable. As our press run
increases the cost of this additional color becomes less significant. While this
will not totally eliminate the “linked list” syndrome it will help decrease its
frequency.

When we have more subscribers and advertisers, and can afford to expand the
magazine, our options for laying out each article will be widened. Our goal is no
articles ever split; although this will probably never be completely possible, we
hope to come closer over time.

Linux in Costa Rica

I want to tell how Linux has helped supporting Costa Rica's national network.

We've installed some Linux name and mail servers in the main subdomains of
our national Internet networks. Linux is now stable enough for doing
administrative chores like nameserving, mail serving and the like.

So CRNet (which is the entity coordinating and giving impulse to our national
network) likes the idea of using Linux for these tasks.

In fact, places like the Presidential House, the Universidad Latina (Latin
University) and the Veterinary School of the Universidad Nacional use Linux
both as name and mail servers.

In the University of Costa Rica (UCR), where I'm working, we are setting up a
Linux box as a temporary and limited newsserver.

—Mario A. Guerra mguerra@cariari.ucr.ac.cr

(Un)supported

I recently decided to purchase a “real” Linux Distribution. My prime motivation
was the fact that I couldn't seem to get my very unsupported Procom CDROM
mounted. Don't feel bad, it didn't work under (IN)Coherent, Oh Esse Too, or

mailto:mguerra@cariari.ucr.ac.cr

even well under Windoze. Procom tech support told me simply “We no longer
support those old drives”, click...buzz. So I was getting desperate.

I had tried under my old system (Linux 1.0.9), by using the drivers there. I was
under the assumption that most of these drives are similar, just VAR-ed under
different labels. I thought this might be a Mitsumi. Anyway, I broke down and
ordered Release 4 and a supplement from Trans-Ameritech, mostly because
they claimed to work under any drive DOS could recognise.

Not only did T-A send the Distribution Release 4 and the July Supplement, they
also included a free copy of the November supplement with Debian and Bogus
and BSD4.4R2.0. (at no extra cost to me!) Thanks T-A. Unfortunately, the only
scheme I could run my disc from was through UMSDOS running from my true
DOS partition. I didn't have the room, nor did I want to. I already had a root
partition that I wanted. So, I gave up.

Then, on Martin Luther King Day, I was goofing with the system and I decided,
on a lark, to do a raw scan of the DOS binary drivers for the Procom drive. I
don't know what I was looking for, but I found it-at the tail of the file was the list
of some Sony 500-series drives! I knew this latest distribution had some cdu535
stuff on it, so I forced a boot from loadlin (a story in itself) and (TaDa!) I could
talk to the disc! But, I went from PL 1.1.18 back down to 1.0.9 . I scanned the
distribution again and found a 1.1.18 kernel with cdu535 support and setup
installed that nicely! Happy ending! Drop in if you're in the neighborhood and
we'll split a Guiness. Have fun, I know I am. Thanks for doing what the big boys
couldn't do!

—Mike Allison be381@freenet.hsc.colorado.edu

More Suggestions

I've just gotten my Linux setup working and got a subscription to LJ. I was
happily overwhelmed by the depth of information your magazine offers. On
that note, I have a few comments/suggestions.

1. Since it appears that Linux is achieving some sort of mass acceptance, it may
be in LJ's best interest to appeal to many types of users. I know as much as the
next programmer about DOS, more than most about OS/2, but very little about
Linux. And I turn to your magazine for help. Unfortunately, I find very little
information for the beginning Linux'er. Maybe a beginners column would help?
How about a series of articles that covers installation considerations, tips, setup
help, and a list of the FAQs and where to get them?

mailto:be381@freenet.hsc.colorado.edu

2. I believe that most experienced *nix users expect new users to understand
how multi-user systems work. They forget that the “I've outgrown Windows”
crowd will be coming onboard and will expect to have their hands held and for
their installation routines to handle all the crucial details. My marketing
background makes me keenly aware of how first impressions make or break a
sale. And you can bet your last dime that Microsoft and IBM will be sucking in
new users at a record pace in 1995. So, if you were to include some new user
information in your magazine, I'm sure you'd capture a few of the wanna-be's.

Thanks for your time.

—Chris Freyer cfreyer@gate.net

LJ Responds:

1. Part of the problem has been finding authors interested in writing beginning
material. We now have several authors interested in this, and more beginning
articles will start showing up. Keep your eyes peeled.

2. The first impression means a lot. However, we can't beat the MS marketing
machine at its own job. Instead, I think that Linux is and will be for those who
have become dissatisfied with MS and (to a lesser extent) IBM. I'm not going to
bet that Linux will ever blow MS out of the market. Instead, I'd like it to be the
best possible thing for those who are frustrated with the alternatives.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cfreyer@gate.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Installation and X-Windows

Dean Oisboid

Issue #12, April 1995

If you are a seasoned hacker—someone who can code a device driver with the
left hand, install a 200-node network with the right, all while reciting the pinouts
of a parallel port-then skip this article.

Welcome all novice Linuxers. If you are a seasoned hacker—someone who can
code a device driver with the left hand, install a 200-node network with the
right, all while reciting the pinouts of a parallel port-then skip this article. Novice
to Novice aims directly at the PC expert who knows nothing about Linux or
Unix, yet is curious about the uproar. As I am a complete Unix beginner myself,
hopefully my naive, embarrassing mistakes will help many readers bypass
much suffering and ridicule. This series will follow as I try to reach goals
appropriate, I think, for the PC user who wants to learn Linux, yet doesn't want
to modify his/her existing setup. Getting Linux to run on a DOS disk using
UMSDOS is the obvious first goal. That, and getting X-Windows to run, are the
topics of this article.

Definitions

For the record, my system is a 486DX-66 with SVGA, dual floppies, Logitech
rodent, 14,400 baud modem, and a 350 meg hard drive, of which the bulk is
filled with games. I have managed to clean off 150 megs for Linux, which the
various manuals and ads suggest is more than enough room. Both MS-DOS 6.2
and Windows 3.11 are installed (and frequently yelled at).

Pick a card....

Despite Unix being one of the longest-lived operating systems, it still carries a
mystique, one that has kept its popularity from growing amongst the general
public. Unix seems to exist only in the darkest realms of academia, engineering,
and high-tech graphics. As a MS-DOS user for too many years, I decided to
finally learn Unix, and with that decision, I faced some choices: local schools

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/012/1057s1.html

offered evening courses for a few hundred dollars a pop; I could buy “personal”
versions of most of the big Unix products for still only a few hundred dollars; or
I could get—what was this?—some free version of Unix called Linux.

Being a miser, I chose Linux. My friend, David Coons, who is some sort of
computer guru for Disney's Imagineering, heartily recommended Morse
Telecommunication's Slackware Professional 2.1. He had bought a variety of
releases and liked this one. He happily explained why, but since the language
he used consisted primarily of acronyms, I just pursed my lips knowingly and
nodded my head at the right pauses. My criterion was far simpler: I figured
anything with a picture of “Bob” on it to be worthwhile. That this version would
allow me to run Linux without repartitioning my hard drive sold me. UMSDOS
seemed like a godsend.

I called ACC Bookstore, where I ordered the Slackware set as well as the
massive DrX Linux book. The order-taker reassured me that Linux-particularly
Slackware-was a great way to learn Unix and not that difficult to figure out, at
least on the basic level.

Novice Note: When you buy Linux, see what type of information comes in the
enclosed manual. Slackware Professional comes with a 600-page book that
duplicates all the vital information in DrX Linux and is better organized. If I had
known, I wouldn't have ordered DrX Linux, since the non-duplicated material
includes things like “The Kernel Hackers Guide” and the “Japanese Language
Extension HOW-TO”. It will be a long while before I understand Linux well
enough to start hacking the kernel, and by then, the manual will be outdated.
For now, you may want to save your money.

After ordering Linux, I went out and bought a CD-ROM player. I had debated for
months about whether to buy a quad-speed (since I already have an original 8-
bit SoundBlaster) or to buy the Creative Labs Discovery Package which would
upgrade my soundcard to 16-bits but give me a less desirable double-speed
CD-ROM. Again, the miser won out and I got the Discovery kit. Not a bad deal, I
rationalized, since the rumors were that high-density CDs would start to appear
in a year or two, and I would rather be obsolete as cheaply as possible. Also,
Linux appears to have solid support for Creative Labs' products. While installing
the multimedia kit, I switched my floppy drives so that the 3.5" became my A:

and the 5.25" became B:. David had highly recommended doing this.

I got the CD drive, got Linux, got the manuals, and started screaming. All the
manuals suggested repartitioning using FIPS and were of no help regarding
UMSDOS-just vague references. Even Doom is listed in the Slackware index but
nothing about UMSDOS. I didn't want to repartition! A call to David and he

reassured me that the options would be obvious on what to do when I ran
setup, after first creating the boot and root disks. Not to panic. Okay, thanks!

Ordinarily, I wouldn't have minded repartitioning. The program to do so, FIPS, a
non-data-destructive FDISK, is a brilliant and obvious (are you listening,
Microsoft?) utility, but I worried that I might FIPS too much or too little disk
space and possibly even kill my MS-DOS programs. UMSDOS is what I wanted, a
no-commitment option.

Taking a deep breath and chanting the “Doom” mantra, I began. Following the
installation instructions (I hate to RTFM), the first step was to prepare boot and
root disks. Since I had a SoundBlaster system, I assumed the SBPCD boot image
would be the obvious choice. For the root disk, I opted for UMSDS144, which
was the mythological UMSDOS system for 1.44 disks.

With these disks created, I booted with the boot disk. It didn't recognize my CD
player. Hmmmm. Of course! The Discovery Kit used a Sony CDU-33a drive. I re-
made the boot disk this time choosing the CDU31a option. Yes! Rebooting with
this new disk showed Linux recognizing my drive.

I ignored the option to set boot parameters, put in the root disk and stalled at
the first hurdle. Did I want a swapfile on my hard drive? I have eight megs of
RAM and the manuals said with that amount of RAM not too worry, so I just
press <Enter> and got a Login prompt. A feeling of lordly omnipotence washed
over me as I smugly logged in as root and ran setup.

A menu came up and the panic started again. Tags, swapspace-what's with all
the choices? I finally figured out that the important first step for beginners is
(T)arget. This will set up a C:\LINUX subdirectory on your hard drive and prompt
you through the other necessary procedures. You will need to select a source;
in my case a CD-ROM drive and specifically, the Sony CDU-33a.

Next, you get to choose which disk sets to install. I decided on all of them
except the F series (FAQs and HOW-TOs). Finally, you select a method of
installation, whether everything goes to hard drive (“SLAKWARE”-where you
make all the decisions as to which files to install) or three choices of TAG sets
which preselect which files to install: SLACKPRO (all files on the hard disk, with
upgrade capability); SLAKPRO2 (some files are links to CD but without easy
upgrade capability); or SLAKPRO3 (many links, again without easy upgrade
capability). Links are references on your hard disk to the actual files on CD; this
conserves hard disk space but gives up access speed.

For my first installation attempt, I chose the “slakware” option, so that
everything would go to the hard drive. In the middle of set “X” the drive ran out

of space. Rebooting DOS and using X-Tree (which ran out of memory), I deleted
the contents of C:\LINUX for another try. I debated whether to upgrade my
drive to a full gigabyte. The mortgage was due, and as you already know, I'm a
miser, so I didn't.

My second installation was “slakpro3”, which put the fewest files directly on the
hard drive. This option would make later upgrading difficult but is a good
exploratory choice. It used only 15 meg, produced about 3000 files, and didn't
do much. Commands like adduser didn't work. I'm not even sure the the shell
was active. Back to DOS for Linux deletion again.

The third installation I tried was to have all the files on the hard drive
(“slackpro”), because I didn't know that this was larger than my previous
“slakware” installation. After an hour, sixteen thousand files, and 150 meg, my
drive again ran out of space. Okay, maybe I don't need 2 million fonts for TeX,
some of the programming tools, or network stuff. Back to DOS, again. My guess
is that 200 meg would handle this type of installation.

Novice Note: The “A” and “Q” disk sets both deal with installing the kernel,
whether you want IDE without SCSI, IDE with SCSI, etc. You may want to do two
rounds of installations: first, you would just deal with sets “A” and “Q” to find
exactly which kernel you want. My choices narrowed down to CDU31ao
(without SCSI support) or CDU31a (with SCSI support); I installed CDU31a. Your
second round of installation would then cover all the other disk sets.

Fourth time, again using the “slackpro” option and ONLY installing the A, AP, D,
Q (for the correct kernel), and X data sets, used 50 meg and created about 5000
files, but the instructions regarding LOADLIN didn't work. Apparently LOADLIN
doesn't get copied over to the hard drive at any point. I found the LOADLIN.ZIP
in the KERNELS subdirectory on the Slackware disk, unzipped it into C:\LINUX,
and modified the given LINUX.BAT to launch it:

 rem C:\LINUX.BAT
 echo off
 cls
 echo Put the Slackware CD in the drive!
 pause
 rem First, ensure any unwritten disk buffers are flushed:
 smartdrv /C
 rem Start the LOADLIN process:
 c:\linux\loadlin c:\linux\vmlinuz root=/dev/hda rw

IT WORKS!!! IT WORKS!!! IT WORKS!!! No more boot and root disks! The lack of
LOADLIN was likely the problem with “slakpro3” not working correctly, but I
won't try that out now that this setup works. I “adduser”ed an account for
myself with no problems, the procedure being very easy, and logged in on that
account via Alt-F2. This is “way cool”, having two active accounts going
simultaneously.

Novice Note: Capitalization counts! I went nearly crazy trying to run a
configuration program. The subdirectories were all spelled correctly but some
of the letters had to be in capitals. I recommend installing the Mouseless
Commander. (I believe it is in the AP dataset. It is now called the Midnight
Commander, since it can now be used with a mouse, but Slackware still refers
to it as the Mouseless Commander in some places.) It's a great Norton
Commander clone and, for this X-tree user, a comfort and an easy way to view
files.

Slackware

Well, it took four tries and at least as many hours, but the Linux base is on the
MS-DOS partition and appears to run smoothly. I had no problems with either
DOS or Windows after installing Linux; it appeared as just another subdirectory,
albeit with a ton of files.

X-Windows

Now to install X-Windows. I called David for just a couple of clues. “You're on
your own. I didn't install X.” I politely hung up as he explained how he was
writing an amazing device driver with his left hand and installing a 200-node
network with his right.

With the benefit of hindsight, I highly recommend that before you attempt to
install X, you have on hand information about your monitor-specifically
bandwidth, horizontal synchronization, and vertical refresh rate. The data
should be in your monitor manual. If not, the Linux guides suggest looking in
the files called “modeDB.txt” or “Monitors” located in /usr/X11R6/lib/X11/doc.
Best to have the actual monitor guide. Also you should know what type of video
card you have. If you have MS-DOS 6.0 or later, the MSD program will give you
that information. In Linux, a program called SuperProbe will also tell you.

Installation is relatively easy, but is only half the job. Again, all this applies to
Slackware Professional.

Change to the /usr/X11R6/lib/ConfigXF subdirectory (watch for capitalization!)
and run ConfigXF. The program will first ask for information about your mouse,
if you have one. I have a Logitech mouse so I selected the Microsoft option. The
guides suggest this, saying that only if you have an older Logitech mouse
should you choose the Logitech option. After this, I agreed with the given
defaults and having /dev/mouse as the path.

Onward to video cards. From the massive list, I chose the Cirrus GD-5426. Next
came a monitor list, and I opted for generic VESA SVGA. After this, it asks you
questions regarding virtual desktop size and other things. Since I didn't

https://secure2.linuxjournal.com/ljarchive/LJ/012/1057s2.html

understand half of the questions, I just accepted the defaults. Eventually, you
get to a screen where you can save the set up, tune the set up, quit, and other
choices. For me the option to tune the set up just didn't work, producing a
variety of errors.

What did work is this: saving the set up to the default choice. Edit /usr/X11R6/

lib/X11/XF86Config, looking for the section called “Monitor”. You'll note that
Bandwidth, HorizSync, and VertRefresh are marked with “EDIT THIS!!!” It took
me too many times to realize that when the X-installation program said you
should edit the XF86Config file that you really had to edit it. Now the crucial
part: replace the information in the file with the information from your monitor
manual.

Novice Note: Take a few minutes and learn to use the text editor vi. Not only is
this editor ubiquitous and small, but many other programs use similar
commands. For instance, the :q that will quit vi will also get you out of the man

program.

For example, I entered the following for my CTX CMS-1561 Multiscan monitor:

Bandwidth 100
HorizSync 30-60
VertRefresh 50-90

In addition to these changes, I also added lines that appeared in the Linux
manuals but not in the XF86Config file. They probably aren't needed, but what
the heck. Under “Keyboard” I added:

AutoRepeat 500 5

Under section “Screen”, subsection “Display” I added:

Depth 8

Save the file. Start X-Windows with startx (or xstart) and, with luck, it will run. If
it doesn't, get the Linux manual, skip the automatic installation altogether, and
carefully do it yourself, checking that the information in the Config files match
your set-up.

Whew! Linux works. X-Windows works. What next? Well, I could install the XAP
disk set to give me programs to use when I am in X. Doom could finally come
out of hiding. Or I could install TeX and see what those Klingon fonts look like.
Or I could tackle SLIP and see if I can get working access to the Internet. Or I
could even reassert my latent geekdom and write a “Hello world!” program in
GNU C/C++. Linux has so much to explore-but then, that's the fun. Watch out
David and all you other Unix gods-we're coming up the ladder!

Dean Oisboid (73717.2343@compuserve.com), owner of Garlic Software, is a
database consultant, Unix beginner, and avowed Doom addict.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:73717.2343@compuserve.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #12, April 1995

ImageCraft releases HC11 C Compiler, version 1.1, Seamless Object-Oriented
Software Architecture and more.

ImageCraft releases HC11 C Compiler, version 1.1

ICC11 is a high quality, low cost compiler package that runs on the Linux, OS/2
2.x, and DOS environments. Features include: interspersed C and assembly
output, ability to assign different names to text and data sections, allowing
better memory utilization, a comprehensive 90 page manual, a fast almost-
ANSI C conformant compiler with built-in peephole optimizer, assembler, linker,
and librarian, standard C header files and library functions, HC11 specific
support such as embedded assembly, pragma for declaring interrupt functions,
etc, and calling conventions compatible with other compilers. Technical support
over the Internet is available. REXIS, an add-on multitasking executive with
subsumption architecture semantics for controlling mobile robots, is also
available.

Price: $45.00, plus shipping and handling. Contact: ImageCraft, P.O. Box 64226,
Sunnyvale, CA 94088-4226, (408)749-0702. E-mail: imagecft@netcom.com.

Seamless Object-Oriented Software Architecture

Interactive Software Engineering, Inc. (ISE) and Prentice Hall announced the
publication of Seamless Object-Oriented Software Architecture: Analysis and
Design of Reliable Systems, by Kim Walden and Jean-Marc Nerson (ISBN
0-13-031303-3). This book covers fundamentals and advanced concepts of O-O
technology. The authors draw from their extensive experience of consulting on
large scale O-O projects worldwide and managing the development of reusable
component libraries for large corporations.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:imagecft@netcom.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Setting Up Services

Mark Komarinski

Issue #12, April 1995

Over the past year, this column has focused on configuring and administering
several standard Unix tools. This month, I'd like to switch to a bit of networking.
Specifically, I introduce how to configure TCP/IP network services for Linux.

To start, imagine the TCP/IP connection you have (anything from an Ethernet
connection to a SLIP/PPP connection from your friendly neighborhood network
provider) as really 65,536 lines (each of which can handle many different
conversations at once) coming into your machine. Some of these lines are
dedicated to serving a single purpose, but a majority of them are open for use.

Each of these separate lines coming into your machine is known as a port, and
each Linux machine, connected to another via TCP/IP, has 65,536 ports
available on it. Each of these ports allows a connection between the two
machines, assuming there is a program on one end that is listening to that port
in question and a program on the other end attempting to connect to it. If a
connection with the remote side is requested and a program on the remote
side is listening to that port, a connection is established. This can be just about
any kind of connection, as telnet, FTP, HTTP (World Wide Web), and SMTP (mail)
all use sockets to get and receive data. Sockets are the entire combination of
local-machine, local port, remote machine, and remote port that defines one of
the communications channels available. The number of these channels is really
only limited by available memory.

Now, there are two ways to make sure the remote side will be able to pick up
on the connection. The first is to start a program running in the background all
the time, waiting for a connection. This can be the easiest way to do it, but
requires some programming skills and requires the program to be in memory
all the time. If you choose to run a program as a daemon, and it is not used
often, it will wind up being just wasted memory and get swapped to disk.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The second option is to have one program listen to ALL the ports and then, if a
connection is requested, start the associated program. This is good because
programs are only run when they are needed, but for programs that require
loading a lot of files on startup or may be called very often, it might be too slow
and waste CPU power as well.

In Linux, as in most versions of Unix, both of these options exist. Some
programs (like the http daemon or sendmail/smail or the NFS daemon) run in
the background and make and remove copies of themselves in memory as
necessary. These programs usually can have large data files that require up to
30 seconds to load. By loading the programs once, then spawning themselves
as needed, these programs can cut their startup time to only a few seconds.
Other programs, such as in.telnetd, which handles incoming login connections,
do not need as much time to load into memory and can be left out of memory
until needed.

In the case of in.telnetd and other small programs, inetd (for Internet Daemon;
also called the “superserver”) service comes in. inetd watches all the ports it
can, and if it sees a connection request, it checks its list to see if there is
something that wants to watch that port. If there is an entry in its list, it starts
the program up with input and output, both directed through the socket.
Otherwise, it refuses a connection, and you see the familiar “Connection
refused” on your terminal.

The way to set up the inetd program is to edit a file called /etc/inetd.conf. In this
file, you may find some lines that look like figure 1.

Now let's decrypt some of this. Any line starting with a # is treated as a
comment by inetd. Any other line is broken up into 6 pieces:

1) Service-This defines the port that is being watched by inetd. The name for
this is in the /etc/services file. If you look there, you'll see lines like:

 ftp 21/tcp
 telnet 23/tcp
 smtp 25/tcp mail

Here are three of our favorite services defined. ftp, telnet and smtp. ftp uses
port 21, telnet uses port 23, and smtp uses port 25. These connections are in /
etc/services so that you don't have to remember that ftp is port 21. You just tell
inetd ftp and it figures out the rest.

2) Socket type-This can be stream or dgram (for datagram). A stream is usually
for a connection that opens for a long time, and (for every case you are likely to
see) uses the tcp protocol. Telnet or FTP are great examples of this. A datagram
is a small packet of data where there is no real connection and (again, for every

https://secure2.linuxjournal.com/ljarchive/LJ/012/1058l1.html

case you are likely to see) will use the udp protocol. Also available are raw, rdm,
and seqpacket.

3) Protocol-tcp for streams, udp for dgram socket types. These types are
defined in /etc/protocols.

4) Flags-Wait and Nowait. This is applicable only to dgram socket types.
Anything else should be defined nowait. If a datagram socket connects to
another socket and frees the socket for inetd to open another port, it is defined
nowait. Otherwise, inetd should wait for the connection to close.

5) User[.group]-This defines which user (and group optionally) to run the
following program under. It's usually root, but some programs you may want
security on and run as a lower user.

6) Command line-Command (including any command line parameters) to run
when inetd finds activity on that port. Almost all programs that are intended to
be run from inetd have names starting with “in” to make this obvious.

You may note that you see a /usr/bin/tcpd in front of the programs. The tcpd

program performs a few functions that inetd doesn't. For example, tcpd can log
the connection through the syslog(3) facility (see Linux Journal issue 11, for a
discussion of syslog), verify a hostname, find the name of the remote user that
is connecting, and deny or allow services to hosts that you can specify Some of
these options require re-compiling the tcpd program, but can greatly increase
the security of your system. One thing you can do, without re-compiling, is limit
the services available to sites known for causing you trouble. To deny telnet
(and other) access to a site, create a file called /etc/hosts.deny. In it, you can list
first the access you want to deny, a colon, then the hosts to deny that access to.

First, list the name of the program that you want to deny. This can be in.fingerd,
in.telnetd, in.ftpd, etc. You can also use the keyword ALL to signify all services.

Next, list the hosts you want to deny access to by the following methods:

1) Network names starting with a “.” will deny access to all hosts that have it as
its last network name. .clarkson.edu will deny access from any host from
Clarkson, such as craft.camp.clarkson.edu. A .edu will deny anyone in the .edu

domain.

2) Network names that end in a “.” will deny access to all hosts that have the
matching string as the front portion of the network name. For example,
128.153. will deny all of the Clarkson domain, while 128.153.16. will deny a
portion of the Clarkson domain.

3) ALL which denies access to everyone, and LOCAL which matches hosts
whose resolved name does not contain a period (.). Many domain name servers
will resolve a name on the local subnet to just the hostname instead of
host.subnet.net. For example, craft.capm.clarkson.edu could appear to another
host on the same subnet as just craft. The man pages for host_access (5) will
explain more wildcards.

4) The keyword EXCEPT will exempt specific hosts who would be denied under
other rules from being denied.

So a sample /etc/hosts.deny could look like this:

 ALL: .clarkson.edu
 EXCEPT: craft.camp.clarkson.edu

Which would deny all access to anyone in the Clarkson domain except for users
on the machine craft.camp.clarkson.edu.

You can also set up an /etc/hosts.allow, following the same methods as the /
etc/hosts.deny, except that the hosts.allow specifies who to specifically allow
access to. In the case of a conflict between a host being denied and allowed,
the entry in /etc/hosts.allow takes precedence, and access is allowed. To make
a site more secure, you could put ALL: ALL in your /etc/hosts.deny (to deny
access to everyone), then list in the /etc/hosts.allow all the hosts you want to
allow in. This way, only the hosts you specify have access to the services that
tcpd runs. Also, if you have only a hosts.allow file, and no hosts.deny file, only
hosts listed in the hosts.allow will be allowed any access at all.

See the man pages for tcpd(8) and hosts_allow(5) for more information about
how to use tcpd at your site.

Now, how does this all work? Let's add something to our /etc/inetd.conf.
Something simple and easy, say a “fortune” port. Many Linux installations
contain the /usr/games/fortune command, and a qotd (quote of the day) port
exists at port 17. So we'll set inetd up so that if you telnet to port 17, you get
the output of the fortune command. So, log into your machine as root and
make sure that inetd is running. If it is not, you will want to set up TCP/IP for
your machine. Even if you're not connected to anything, you can still set up the
loopback device and connect to yourself.

First, make sure that qotd is defined in your /etc/services:

qotd 17/tcp

Next, we'll add the line in the /etc/inetd.conf to make inetd start fortune. This
can be added anywhere in the /etc/inetd.conf:

qotd stream tcp nowait root /usr/sbin/tcpd \
 /usr/games/fortune

You'll have to restart inetd to make it re-read the inetd.conf file. An easy way
that only works under Linux, but should always work under Linux, is:

linux:/# killall -HUP inetd

On some systems, the PID of the inetd process may be kept in a file, such as /
var/run/inetd.pid, and on non-Linux systems without the inetd.pid file, you will
have to use the ps command to find the PID of the inetd process.

Now if you telnet to localhost port 17, you'll find something like this:

linux:/# telnet localhost 17
Trying 127.0.0.1
Connected to localhost
Escape character is '^]'.
Money is the root of all wealth
Connection closed by foreign host.
linux:/#

There are only a few programs that you can use for this. Things that use curses,
like joe, or anything that uses the SVGAlib, won't work, as it won't be able to
open your tty (remember: to Linux, you're telnetting in from somewhere else).

Any programs you do put in your inetd.conf file should have good security. This
means:

1) Verify (and modify if necessary) the user that the process is running under.
Many need root privileges, but some don't.

2) Verify the security of the program that is being connected to a TCP/IP socket.
Something like /usr/games/fortune is not interactive, but a program like the old
sendmail allowed the Internet worm to wind its way through machines a few
years ago. (Note that the sendmail bug was fixed.)

3) Add extra security to inetd by adding something like tcpd, which will allow
you to deny or allow various hosts from connecting to your machine. Check the
tcpd man pages for more information about tcpd.

Now that you have your services set up, you can hook in your own services and
use them for whatever you want. If you have questions or comments about his
article, or have some topic you would like to see in a future issue of the Linux
Journal, please send me an e-mail note at komarimf@craft.camp.clarkson.edu.

Mark Komarinski (komarimf@craft.camp.clarkson.edu) graduated from
Clarkson University (in very cold Potsdam, New York) with a degree in computer
science and technical communication. He now lives in Troy, New York, and

mailto:komarimf@craft.camp.clarkson.edu
mailto:komarimf@craft.camp.clarkson.edu

spends much of his free time working for the Department of Veterans Affairs
where he is a programmer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/012/toc012.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Linux: It's Not Just for Intel Anymore
	Joseph L. Brothers
	Name: Linux/68k
	Name: Linux/Alpha
	Name: Linux/MIPS
	Name: Linux/Sparc
	Name: Linux/PowerPC
	Wrapping Up The Virtual Brewery Tour

	Linux in the Real World
	Paul M. Sittler
	Information Server Content
	Future Directions
	Impact of The TAEX Information Server
	Usage Analysis
	Lessons Learned from the Leviathan
Experience
	Summary

	Ethernetting Linux
	Terry Dawson
	Ethernet
	Ethernet Card
	Software configuration

	Linux Programming Hints
	Eric Kasten
	Background
	Before Beginning
	Step One: Setup
	Step Two: The First Compile
	Step Three: Importing Symbols
	Step Four: The Second Compile
	Step Five: Building The Library
	Trail's End

	What's GNU
	Arnold Robbins
	The rc Shell
	The es Shell
	The 9wm Window
Manager
	The 9menu Command Line Menu
Program
	Experiences
	Using These Programs Under Linux
	Summary
	Acknowledgements
	References

	Cooking with Linux: Amsterdam on Fifty Guilders a Day
	Matt Welsh

	The ELF Object File Format: Introduction
	Eric Youngdale

	Mr. Torvalds Goes to Washington
	Kurt Reisler

	A review of InfoMagic's December 1994 Release
	Caleb Epstein
	What You Get
	Using the Discs
	It's Not BOGUS

	Xfig
	Robert A. Dalrymple

	A Quarter Century of Unix
	Danny Yee

	The Mosaic Handbook for the X Window System
	Morgan Hall

	Letters to the Editor
	Various
	Linked Lists
	LJ Responds:
	Linux in Costa Rica
	(Un)supported
	More Suggestions
	LJ Responds:

	Linux Installation and X-Windows
	Dean Oisboid
	Pick a card....
	X-Windows

	New Products
	LJ Staff
	ImageCraft releases HC11 C Compiler, version
1.1
	Seamless Object-Oriented Software
Architecture

	Setting Up Services
	Mark Komarinski

